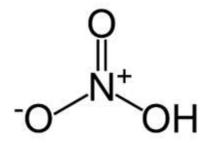
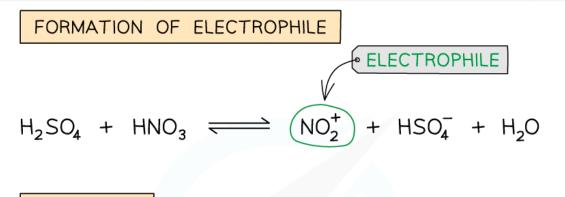
## **REACTION OF BENZENE**

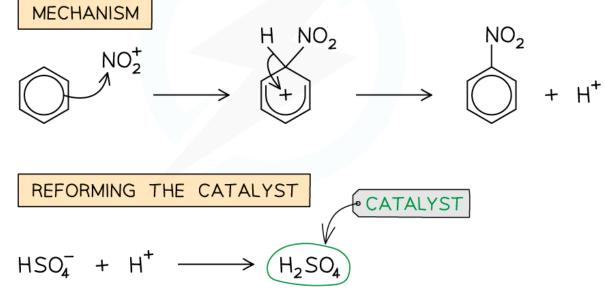
•NITRATION
•SULPHONATION
•HALOGENATION
•FRIDEL CRAFT ALKYLATION & ACYLATION

## NITRATION

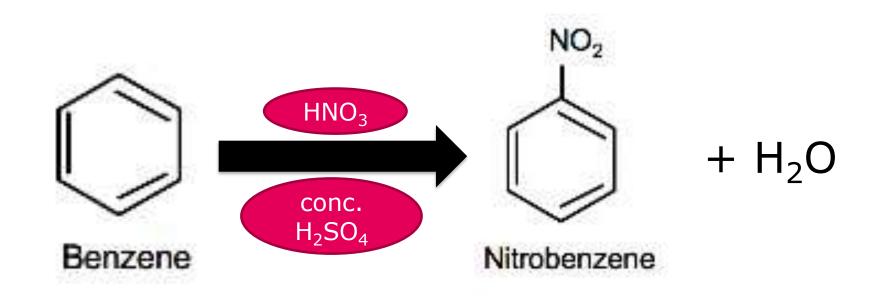

- The introduction of NO<sub>2</sub> (nitro group) on benzene
- Substitution of 1 hydrogen atom by  $NO_2$  is known as nitration of benzene
- Nitrobenzene is formed with chemical formula-  $C_6H_5NO_2$

## NITRATION


- This reaction takes place in the presence of following reagents-
- 1. Nitric acid -HNO<sub>3</sub>
- 2. Concentrated Sulphuric acid H<sub>2</sub>SO<sub>4</sub> (king of acid)


## NITRATION MECHANISM

OH<sup>-</sup> is released by HNO<sub>3</sub>
 so only NO<sub>2</sub> (nitronium ion)
 remains which gets attached to
 benzene to form nitrobenzene




- $H^+$  is donated by conc.  $H_2SO_4$  so  $HSO_4^-$  remains.
- H<sup>+</sup> & OH<sup>-</sup> combines to give water





### NITRATION



# APPLICATION OF NITRATION

•Majorly, nitration process chemistry in industry is utilised for making explosives. For instance, a Nitration reaction is used to form nitroguanidine from guanidine. The changing reaction of toluene structure ( $C_7H_8$ ) to (TNT) / trinitrotoluene.

•Another significant use of nitration chemistry in the industry is the nitrated product called Dinitrotoluene. DNT/ Dinitrotoluene is transformed into toluene diisocyanates (toluene structure). The latter has its application in the production of elastomers, fibres, polyurethane foams and varnishes.

•Furthermore, they have wife applications as precursors for a reaction and as chemical intermediates in the reaction process and precursors.