

4TH SEM

ORGANIC CHEMISTRY

FIRST ORDER 7

 A reaction is a process in which the reactants gets converted into product

WHAT IS FIRST ORDER REACTION?

A first-order reaction can be defined as a chemical reaction in which the reaction rate is linearly dependent on the concentration of only one reactant. In other words, a first-order reaction is a chemical reaction in which the rate varies based on the changes in the concentration of only one of the reactants

- Examples- SO2Cl2 → Cl2 + SO2
- $2N2O5 \rightarrow O2 + 4NO2$

suppose a reaction in which reactant A gets converted into product B

At time =0, {when reaction hasn't started} concentration=

At time =t, concentration=

Reactant

A

 C_{0}

Ct

Product

B

0

bt

- Differentiation rate law [D.R.L.]-
- r = -dc/dt
- here negative sign is used because there is decrease in concentration of the reactant
- Rate law = $r = K [C]^{\frac{1}{2}}$ first order reaction

- Hence by using above 2 equations
- K [C]= -dc/dt

• -kdt = dc /[C]

integrating both sides

$$-\int_{0}^{t} Kdt = \int_{0}^{C_{t}} -dc$$

$$-\int_{0}^{t} [C]$$

$$-K \int_{0}^{t} dt = \int_{0}^{C_{t}} dt$$

Here integration & differentiation will cancel out each other

• In integration: upper limit - lower limit. So,

WHAT is HALF LIFE OF A REACTION?

- The half-life of a chemical reaction can be defined as the time taken for the concentration of a given reactant to reach 50% of its initial concentration (i.e. the time taken for the reactant concentration to reach half of its initial value).
- It is denoted by the symbol 't1/2' and is usually expressed in seconds.

lnCt = -kt + lnCo
kt= ln Co/Ct
substituting Ct = Co/2 & t =
$$t \frac{1}{2}$$
 in the above equation, we
get

$$kt^{1/2} = ln Co/Co/2$$

$$kt \frac{1}{2} = ln2$$

 $ln2/k = t \frac{1}{2}$ Or $t \frac{1}{2} = 2Co/k$

This is the life half of first order reaction