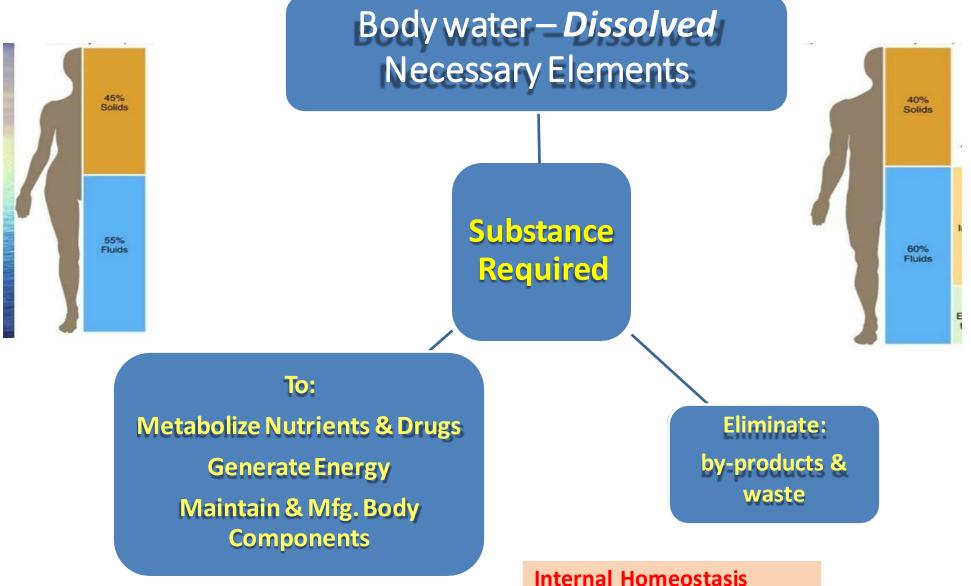

UNIT II

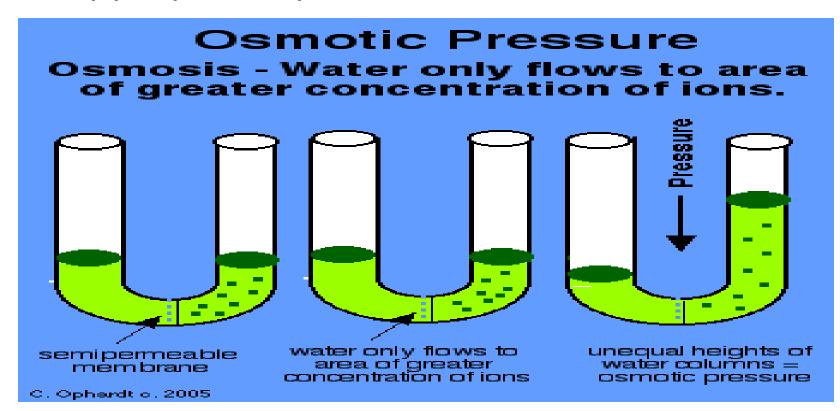
10 Hours

- Acids, Bases and Buffers: Buffer equations and buffer capacity in general, buffers in pharmaceutical systems, preparation, stability, buffered isotonic solutions, measurements of tonicity, calculations and methods of adjusting isotonicity.
- Major extra and intracellular electrolytes: Functions of major physiological ions, Electrolytes used in the replacement therapy: Sodium chloride*, Potassium chloride, Calcium gluconate* and Oral Rehydration Salt (ORS), Physiological acid base balance.
- **Dental products**: Dentifrices, role of fluoride in the treatment of dental caries, Desensitizing agents, Calcium carbonate, Sodium fluoride, and Zinc eugenol cement.

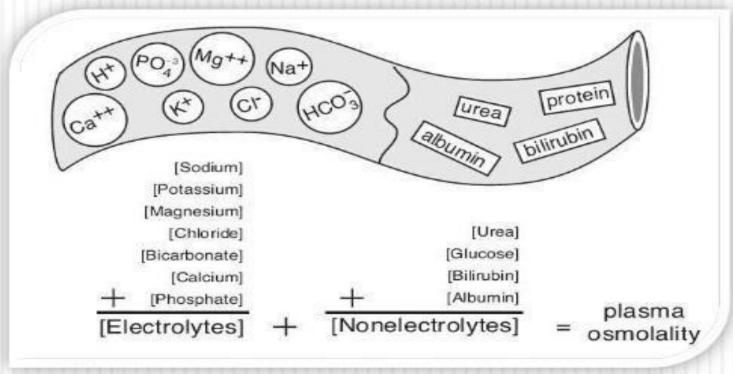
DEPTH OF BIOLOGY Major Intra & Extracellular ELECTROLYTES


Major extra and intracellular **ELECTROLYTES**

(b) Exchange of water among body fluid compartments


- Chemical substance dissolved in body fluid can be categorized into:
- **A. Non-electrolytes:** Organic molecules, Do not generate ions in solution form.
- e.g., Glucose, Urea, Creatine etc
- **B.** Electrolytes: Mostly inorganic substances, Dissociates into ions (+ve/-ve) in the body fluid.
- e.g., Acids, Bases, Salts, <u>few organic molecules</u> like Citric acid, Lactic acid, Oxaloacetic acid etc

Body: "Both are necessary to perform physiological functions"!


(ionic, osmotic, pH balance)

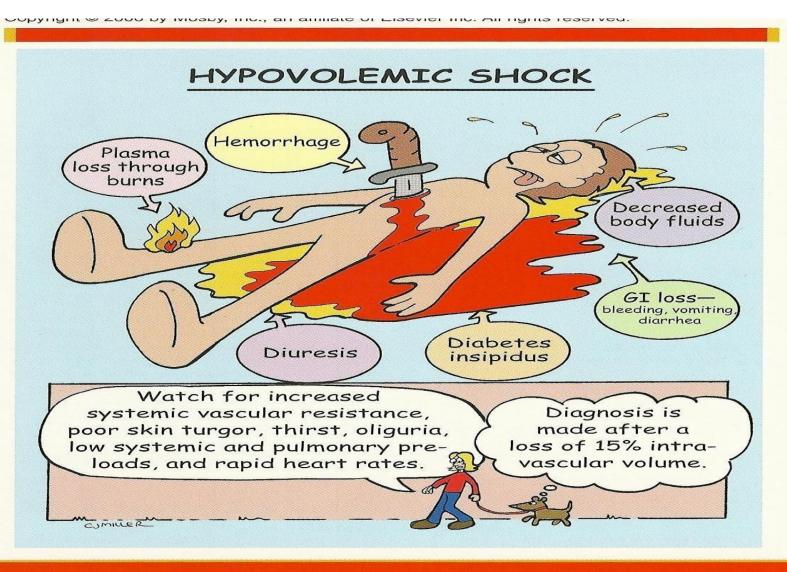
 Osmotic Pressure: concentration of electrolytes (dissolved ions) in each compartment that creates the osmotic pressure that holds water in the appropriate space.

Osmolality

- is the number of particles (mmol) contained in one liter of water, so measured in mmol/L.
- i.e. it is the concentration by number

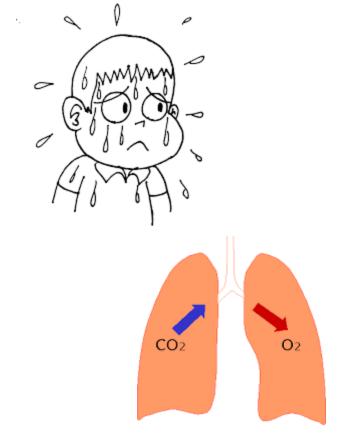
Intravascular

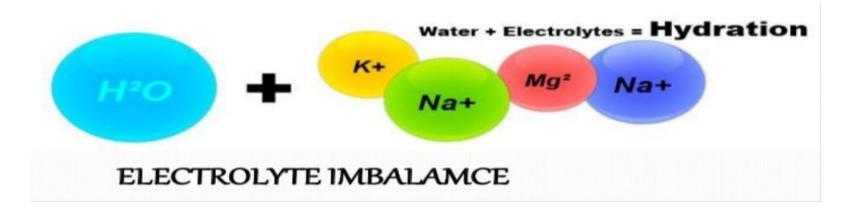
- Dehydration: state in which water volume is low in all 3 compartments (Intracellular, interstitial & plasma fluid).
- Edema: State in which fluid accumulates in the interstitial space due to low Oncotic (Protein) pressure.


Intacellular

nterstitia

• Hypovolemia:


 State in which intravascular volume is low.



Salt & water balance:

- Oral intake of fluid & electrolytes
- Evaporation of solute free water across the skin and lungs.
- Excretion of water & electrolytes through the kidneys : ↑↓ output - antidiuretic hormone (ADH) & aldosterone.

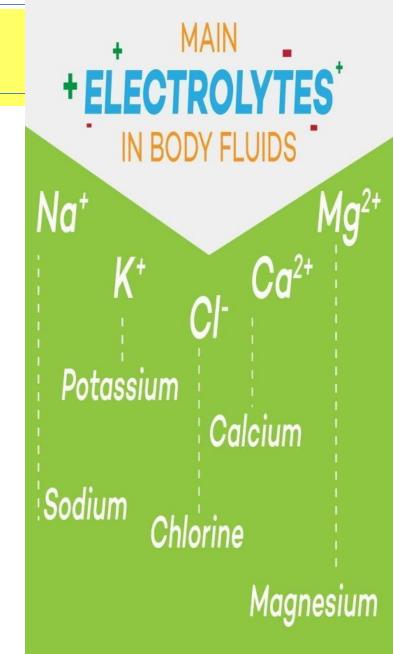
- The fluid in each compartment is ionically balanced.
- Body has the capacity to adjust slight variations in electrolytic concentration of the fluid compartments.
- If concentration of electrolytes changes water will migrate across the cell membrane to reestablish <u>Osmotic</u> <u>equilibrium</u>.

Replacement Therapy

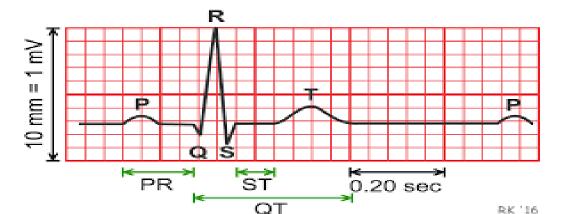
• When body itself fails to correct an electrolyte imbalance.

Products:

- Electrolytes
- Acids & Bases
- Blood Products
- Carbohydrates
- Amino acids
- Proteins



Electrolytes


- Mineral salts (inorganic compounds) are necessary within the body for all body process.
- They are usually required in small quantities.
- Main elements:

Calcium & Phosphorus: bone & teeth Iron: haemoglobin - convey oxygen & CO2. Na & K: Transmission of nerve impulses & contraction of muscles

Important Functions:

- Control of osmosis of water between body compartments.
- Maintain the acid-base balance required for normal cellular activates.
- Help to generate <u>action potentials</u> & graded potentials.
- Help to control secretion of some hormones
- (e.g., Aldosterone, Thyroid hormones) and neurotransmitters.

Major Physiological Ions

- Nature/Properties
- Important Role/Major Physiological role
- ↑↓s
 Sodium (Na+),
 Chloride (CI-),
 Potassium (K+),
 Calcium (Ca2+),
 Magnesium (Mg2+),
 Phosphate (H2PO4-,HPO4²⁻,PO4³⁻),
 Bicarbonate (HCO3-)

Electrolytes used in the Replacement Therapy

- In a healthy person, at least <u>70 liters</u> of <u>fluids</u> are <u>exchanged</u> (secreted and reabsorbed) across the walls of the <u>intestines</u> per day.
- The brain, heart, kidney, and virtually every other vital organ depend on these fluids to function.
- As the body <u>takes</u> in the water and salts it <u>needs</u>, it loses or <u>excretes</u> those it does <u>not need</u> through urine, stools, and sweat.
- Thus, the <u>secretion and absorption</u> rates are kept in <u>balance</u>.

- In various condition like <u>prolonged fever</u>, sever <u>vomiting</u> or <u>diarrhea</u> creates a tremendous outpouring of water (heavy loss of water) & electrolytes (body salts) <u>state of dehydration</u> and impairs the capacity to reabsorb the fluid & electrolytes in our system.
- To compensate this loss, Electrolyte Replacement Therapy / Oral Rehydration Therapy is required.
 "Replace what it Lost"
- 2 types of solutions used

1. A solution for rapid initial replacement:

Name	Concentration Range
Sodium	130 – 150 mEq/L
Chlorine	98 – 110 mEq/L
Potassium	4 – 12 mEq/L
Bicarbonate	28 – 55 mEq/L
Calcium	3 -5 mEq/L
Magnesium	3 mEq/L

These electrolyte concentrations thus closely resemble with the electrolyte concentrations found in extracellular fluids!

Name	mOsm/Litre
Sodium	75
Potssium	20
Dextrose	75
Chloride	65
Citrate	10
Toal osmolarity in approx. 200ml water	245

2. A solution for subsequent replacement:

Name	Concentration Range	
Sodium	40 – 120 mEq/L	
Chlorine	30 – 105 mEq/L	
Potassium	16 – 35mEq/L	
Bicarbonate	16 – 53 mEq/L	
Calcium	10 - 15 mEq/L	
Magnesium Phosphorus	03 - 06 mEq/L 0 – 13 mEq/L	

PHYSIOLOGICAL ACID-BASE BALANCE

- Electrolytes also play an important role in regulating body's acid-base balance
- Body fluids contain balanced quantities of acids & bases.

Acidity of the solution: No of [H+] present in fluid/solution - ECF Sources: [H+]

- Food
- Cellular metabolism of Glucose, Fatty acids, & Amino acids etc
- Reabsorption

 Biochemical reactions: Very sensitive to change in pH (acidity/alkalinity)

e.g., enzyme Pepsin in the stomach– helps in digestion of dietary proteins at low pH.

enzyme Ptyalin in saliva – helps in digests carbohydrates at pH between 5.4 - 7.5.

Body Fluid	pH value	Kidney – removes excess acid –
Urine	4.5 – 08	make urine acidic
Blood	7.4 – 7.5	
Gastric juice	1.5 – 3.5	Metabolic activity –
Saliva	5.4 – 7.5	Produces acid/bases - Alter the blood pH
Bile	6.0 8.5	

Buffer Systems

Acids-bases are continually taken into & formed by the body, the pH of fluids inside & outside cells remain fairly constant because of the presence of 'BUFFER SYSTEMS'.

•Consists of a weak acid & the salt of that acid

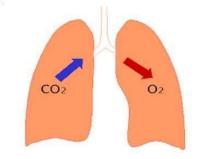
Functions:

- to convert strong acids or bases into weak acids or bases.
- to prevent drastic change in pH of the blood.

Note: However, it will be effective only if excess acid/alkali excreted out by lungs and/or kidneys.

Types of Buffer systems:

- Carbonic Acid (H2CO3) Bicarbonate (HCO3-) Buffer System
- Phosphate (H2PO4-,HPO4-,PO4-) Buffer
 System
- Protein (Hemoglobin/HbH) Buffer System


Carbonic Acid (H2CO3) – Bicarbonate (HCO3-) Buffer System

- Major buffer of metabolic acid/base present in Plasma & Kidneys.
- Regulates blood pH

Some CO₂, the end product of cellular metabolism, is carried to the lungs for elimination, and the rest dissolves in body fluids, forming carbonic acid that dissociates to produce bicarbonate (HCO₃) and hydronium (H₃O⁺) ions.

More of the HCO_3^{-1} is supplied by the kidneys.

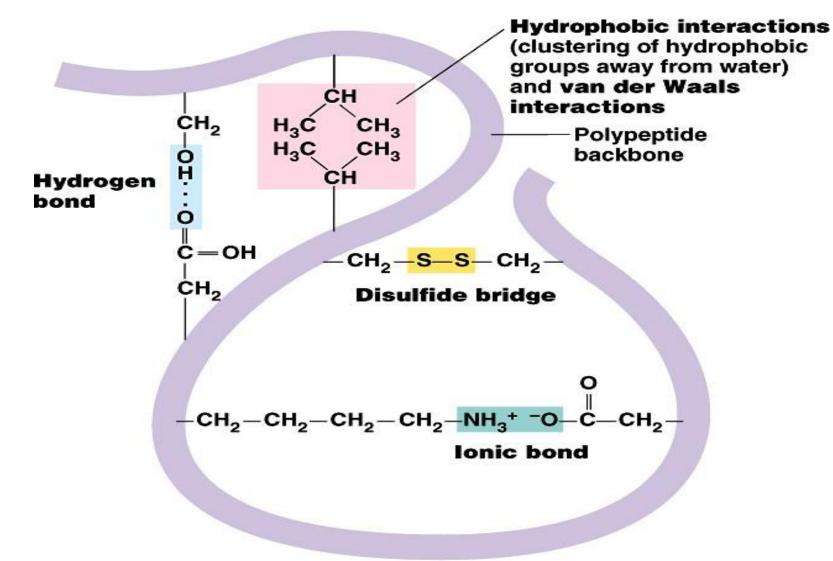
 $CO_1 + H_2O \leftrightarrow H_2CO_3$ $H_2CO_3 + H_3O \leftrightarrow H_3O^* + HCO_3^*$

Regulation of blood pH

- The lungs and kidneys play important role in regulating blood pH.
- The lungs regulate pH through retention or elimination of CO₂ by changing the rate and volume of ventilation.
- The kidneys regulate pH by excreting acid, primarily in the ammonium ion (NH₄⁺), and by reclaiming HCO₃⁻ from the glomerular filtrate (and adding it back to the blood).

Phosphate Buffer System

- The phosphate buffer system (HPO²₄/H₂PO³₄) plays a role in plasma and erythrocytes.
- $\blacksquare H_2PO_4^{\cdot} + H_2O \leftrightarrow H_3O^{\cdot} + HPO_4^{2}$
- Any acid reacts with monohydrogen phosphate to form dihydrogen phosphate

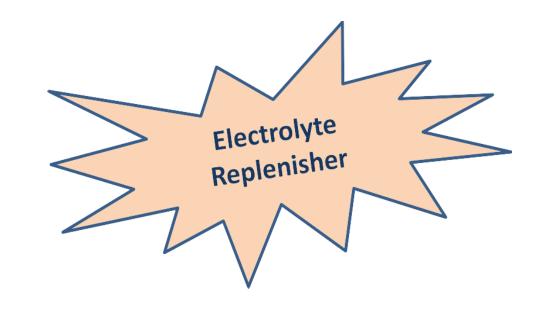

dihydrogen phosphate monohydrogen phosphate

 $\blacksquare H_2 PO_4^{\cdot} + H_2 O \leftarrow HPO_4^{\cdot} + H_3 O^+$

The base is neutralized by dihydrogen phosphate
 monohydrogen phosphate

 $H_2PO_4^{-} + OH^{-} \rightarrow HPO_4^{-2} + H_3O^{+}$

DEPTH OF BIOLOGY Protein Buffer System

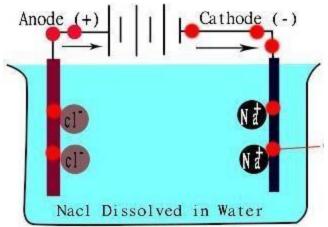

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Proteins act as a third type of blood buffer

- Proteins contain COO groups, which, like acetate ions (CH₃COO), can act as proton acceptors.
- Proteins also contain NH³ groups, which, like ammonium ions (NH⁴), can donate protons.
- If acid comes into blood, hydronium ions can be neutralized by the – COO⁻ groups
- $\text{COO}^{\circ} + \text{H}_3\text{O}^{\circ} \rightarrow \text{COOH} + \text{H}_2\text{O}$
- If base is added, it can be neutralized by the NH₃^{*} groups
- $\operatorname{NH}_{3}^{+} + \operatorname{OH}^{-} \rightarrow \operatorname{NH}_{2} + \operatorname{H}_{2}\operatorname{O}$

Properties, Preparation, Assay & Uses of

- Sodium Chloride
- Potassium chloride
- Calcium gluconate



DEPTH OF BIOLOGY Sodium Chloride (NaCl)

- Sodium chloride is an ionic compound
- It is commonly called as table salt, halite or common salt (99.5% NaCl).
- It is the salt which is mainly responsible for the salinity of the seawater and for the extracellular fluid which is present in many multi-cellular organisms.
- It finds its application from household, medicines to industrial processes.
- Sea water is a major source of this salt.

Properties: NaCl

- It is easily soluble in water and partially in glycerine & alcohol.
- They are white crystals which does not have an odour but possess a taste.
- In its aqueous state NaCl acts as a good conductor of electricity due to the free movement of the ions.
- M.P.801°C

Preparation of Sodium Chloride:

 1 mol of sodium bicarbonate reacts with 1 mol of hydrochloric acid to generate 1 mol of salt, 1 mol of water, and/or 1 mol of carbon dioxide.

$NaHCO_3 + HCl_{(aq)} \rightarrow NaCl_{(aq)} + H_2O_{(aq)} + CO_2$

Procedure:

- Accurately weigh 5 g of NaHCO3 into evaporating dish.
- Add 5 to 6 mL of distilled water to the dish to wet the bicarbonate.
 Cover the dish with

a watch glass.

- Move the watch glass aside slightly and add, in small portions, about 6 mL of concentrated hydrochloric acid from a 10 mL graduated cylinder.
- After the addition of 6 mL of acid, continue adding acid only as long as CO2 (gas) continues to be evolved.
- Remove the watch glass and evaporate to dryness over a water bath.
- Allow the dish to cool, weigh & collect it out the crystals of NaCl.

 Assay: It is analysed by Precipitation Titration (Mohr's method)

 $NaCl + AgNO3 \rightarrow AgCl + NaNO3$

- Sodium chloride reacts with silver nitrate solution using potassium chromate as an indicator
- $2 \text{ AgNO3} + \text{K2CrO4} \rightarrow \text{Ag2CrO4} + 2\text{KNO3}$

Reddish brown coloured

silver chromate

Uses:

- Normal saline (0.9%) that has the same osmotic pressure (isotonic) as body fluids.
- Wet dressings
- Hypotonic solution when patient unable to take fluid & nutrients orally.
- Hypertonic solution/injections: patients suffers from excessive loss of sodium (1.6% w/v of NaCl).

Potassium Chloride (KCl)

- Colourless, odourless white granular powder or crystals.
- It has a saline taste and is stable in air.
- Soluble in water and insoluble in alcohol.

Assay: It is analysed by Precipitation Titration (Mohr's method) KCl + AgNO3 \rightarrow AgCl + KNO3

- KCl reacts with silver nitrate solution using potassium chromate as an indicator
- $2 \text{ AgNO3} + \text{K2CrO4} \rightarrow \text{Ag2CrO4} + 2\text{KNO3}$

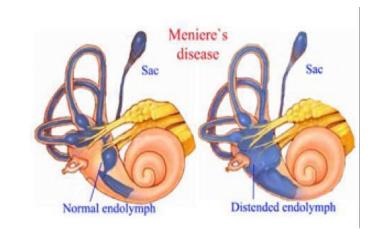
Reddish brown coloured silver

chromate

Preparation:

<u>Method 1:</u> Potassium chloride can be prepared by treating potassium hydroxide (KOH) or other potassium

bases (potassium carbonate, potassium sulphate) with hydrochloric acid:


$KOH + HCI \rightarrow KCI + H_2O$

- This conversion is an acid-base neutralization reaction.
- The resulting salt can then be purified by recrystallization. <u>Method 2:</u>
- By allowing potassium to burn in the presence of chlorine gas (exothermic reaction)

$$2 \text{ K} + \text{Cl}_2 \rightarrow 2 \text{ KCl}$$

Uses of KCl

- Potassium replacement (hypokalemia or hypochloremic alkalosis condition).
- As an isotonic solution alone
- Or Mixed with NaCl or 5% dextrose solution
- Paralysis
- Menier's syndrome
- Digitalis intoxication
 Note: cautiously given in heart & renal diseases.

Calcium Gluconate

- It appears odourless, tasteless, white crystalline granules or powder.
- Soluble in water and insoluble in alcohol & other organic solvents.
- Its solution remains neutral to litmus.
- Decomposed by dilute mineral acids (HCl) into Gluconic acid and Calcium chloride of the mineral acid used.

Assay: By Complexometric Titration

- An accurate weighed sample is dissolved in small quantity of water, acidified with dil. HCL.
- To the above solution add 1.0 N NaOH solution, murexide indicator and a solution of naphthol green and titrate against disodium EDTA (Ethylenediamintetraacetic acid) until deep blue colour develops.
 - Uses: Orally, IV or I.M. in the treatment of Hypocalcaemia or in calcium deficiency.
 - Note: Calcium gluconate injection represents 92 103% of calcium gluconate with a between 6 8.2.

OH OH

ÓH ÓH

Ca-2

ÓH ÓH

Preparation of calcium gluconate

- To a 200 g of anhydrous glucose in 1000 ml of water, 200 g of bromine are gradually added.
- After the reaction is over the excess of bromine is boiled off and the golden-yellow solution is cooled and the volume measured.
- Add lead carbonate to the above solution lead gluconate is then formed and this prevents the lead bromide from crystallizing out.
- The resulting mixture is concentrated and allowed to stand in the ice box for 24 hours, after which the lead bromide is filtered off and washed with a little ice-cold water.
- In the presence of silver oxide or silver carbonate, and hydrogen sulfide is passed in to remove minute amounts of lead and silver ions in solution.
- Gluconic acid, is boiled with an excess of calcium carbonate. After cooling, and filtering off the excess of carbonate.
- Filter & concentrate the solution of calcium gluconate.