

DEPTH OF BIOLOGY - Level up your studies with DOB
For more updates join DEPTH OF BIOLOGY APPLICATION

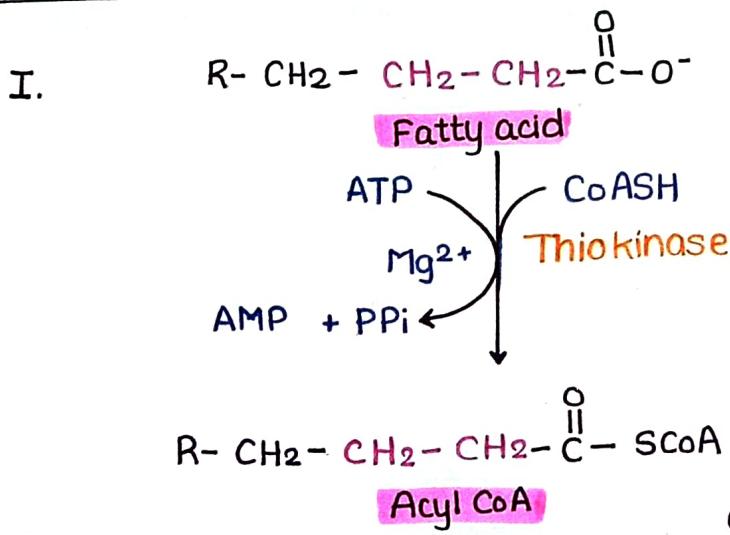
Biochemistry

Sem- II

Important
Questions &
Solutions

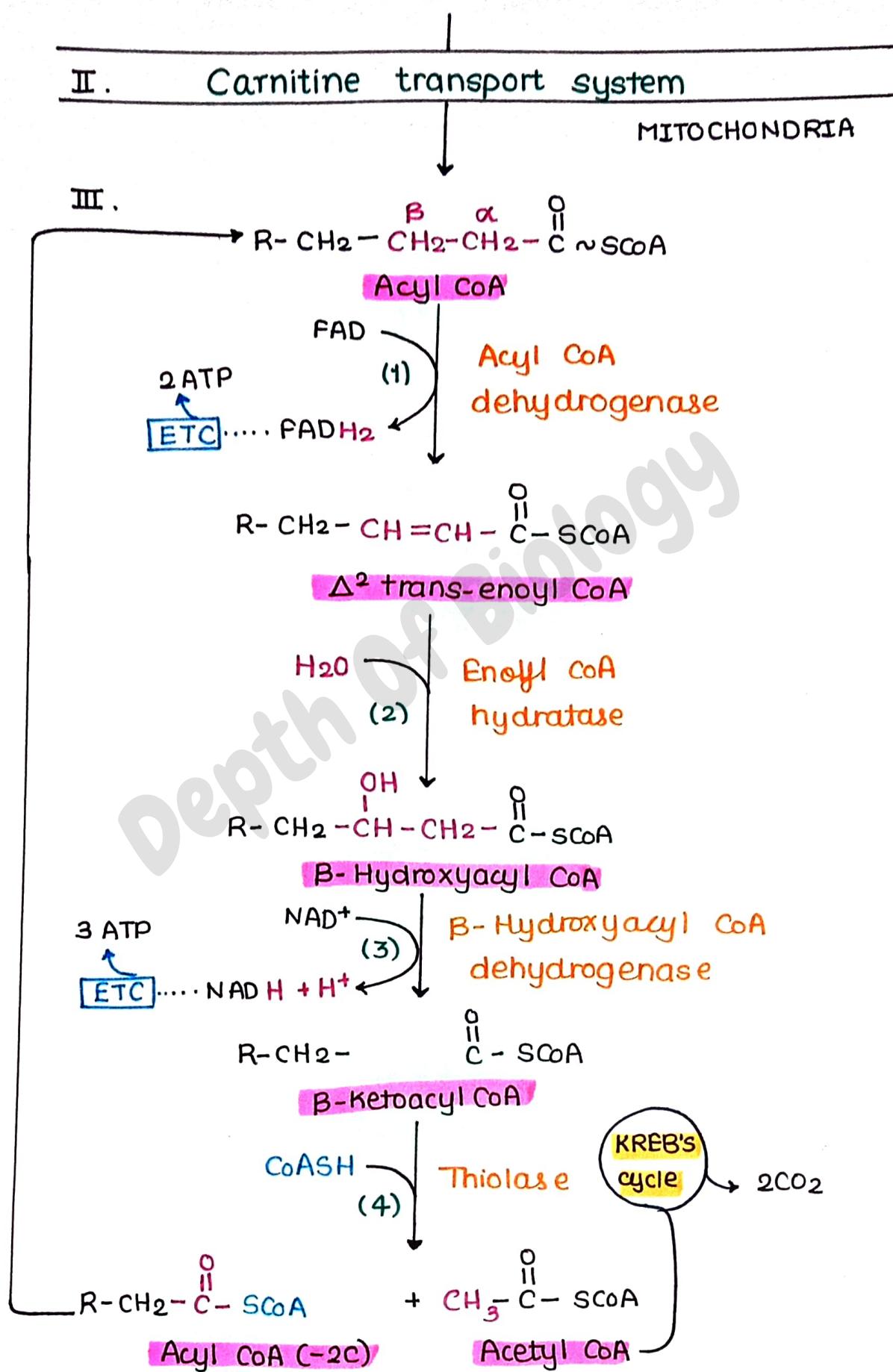
DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION


UNIT - III

10/15 Marks Question

Q.1. Explain oxidation of saturated fatty acid (Palmitic acid)


→ **ANSWER** : **Introduction** :

- Oxidation of fatty acids is the major pathway for the breakdown of fats to produce energy.
- It occurs mainly in the mitochondria of liver, heart and skeletal muscle.
- Among the saturated fatty acids, palmitic acid is the most common, having 16 carbon atoms.
- It undergoes complete oxidation through a cyclic process known as β -oxidation.
- **Oxidation of Saturated fatty acid**.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

• Steps in the Oxidation of Palmitic Acid :

1. Activation of Palmitic Acid :

- Site : Cytosol (outer mitochondrial membrane).
- Before oxidation, free palmitic acid is activated to palmitoyl-CoA.
- Energy cost : 2 high-energy phosphate bonds (equivalent to 2 ATP).

2. Transport into Mitochondria [Carnitine Shuttle]

- Long chain fatty acyl-CoA cannot directly enter the mitochondria so a carnitine shuttle system is used.
- Steps of Carnitine Shuttle :

- 1). Palmitoyl-CoA + Carnitine \rightarrow Palmitoyl-carnitine
(Enzyme : Carnitine acyltransferase I - outer membrane)
- 2). Palmitoyl-carnitine enters mitochondrial matrix via translocase.
- 3). In the matrix,
Palmitoyl-carnitine \rightarrow Palmitoyl-CoA + carnitine
(Enzyme : Carnitine acyltransferase II)

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

3. β -Oxidation Cycle (in Mitochondrial Matrix)

- β -oxidative is a cyclic degradation of fatty acids, where two-carbon units are removed at a time as acetyl-CoA.
- Each cycle includes 4 steps:

Step No.	Reaction	Enzyme	Product
1.	Oxidation	Acyl-CoA dehydrogenase	FADH ₂
2.	Hydration	Enoyl-CoA hydratase	—
3.	Oxidation	β -hydroxyacyl-CoA dehydrogenase	NADH
4.	Thiolysis	β -Ketothiolase	Acetyl-CoA

- Palmitoyl-CoA (C₁₆) undergoes 7 cycles of β -oxidation
- Final products:
 - 8 Acetyl-CoA
 - 7 NADH
 - 7 FADH₂

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

4. Fate of Acetyl-CoA

- The 8 molecules of Acetyl-CoA enter the Citric Acid cycle (TCA / Krebs cycle) to produce ATP, CO₂ and water.
- In liver, acetyl CoA may also be used to form ketone bodies during fasting / starvation.

ATP Yield from Complete Oxidation of Palmitic Acid

Step	Molecules formed	ATP Yield
From 7 NADH	7	7×2.5 = 17.5 ATP
From 7 FADH ₂	7	7×1.5 = 10.5 ATP
From 8 Acetyl-CoA (via TCA cycle)	8	$8 \times 10 = 80$ ATP
Total ATP		108 ATP
Minus Activation cost	- 2 ATP	
NET ATP Yield		106 ATP

- Modern calculation uses P:O ratio of 2.5 NADH and 1.5 for FADH₂

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- **Significance of β -oxidation of Palmitic Acid.**
- Major energy source during fasting, prolonged exercise or low carbohydrate intake.
- More energy efficient than glucose oxidation (Glucose = 30 - 32 ATP vs Palmitate = 106 ATP)
- Important for maintaining blood glucose (via gluconeogenesis) by sparing glucose usage in muscles.
- In liver, excess acetyl-CoA is used for ketogenesis, supplying energy to brain during starvation.
- **Conclusion:**
- Oxidative of saturated fatty acid like palmitic acid is an essential metabolic process for energy production.
- It involves activation, transport and mitochondrial β -oxidation, resulting in high ATP yield.
- It plays a crucial role in energy homeostasis, especially when carbohydrates are limited.

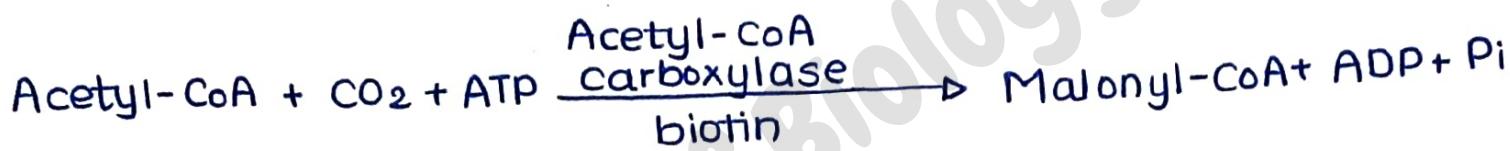
DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

Q.2. Explain De-novo synthesis of fatty acids

→ **ANSWER** : **De Novo Synthesis of Fatty Acids**

- De novo Synthesis means the new formation of fatty acids from non-lipid precursors mainly acetyl-CoA.
- This process occurs mainly in the cytosol of liver, adipose tissue, lactating mammary glands and kidneys.
- The major end product of this pathway is palmitic acid (C_{16}) a saturated fatty acid.
- Site, Requirements and Overview


Factor	Description
Site	Cytosol of liver, adipose tissue, lactating mammary glands & kidney.
Starting Molecule	Acetyl-CoA
End product	Palmitic acid (C_{16})
Main Enzyme	Fatty acid synthase complex
Coenzyme	NADPH (from HMP shunt)
Energy Requirement	ATP
Carbon donor	Malonyl-CoA

DEPTH OF BIOLOGY - Level up your studies with DOB

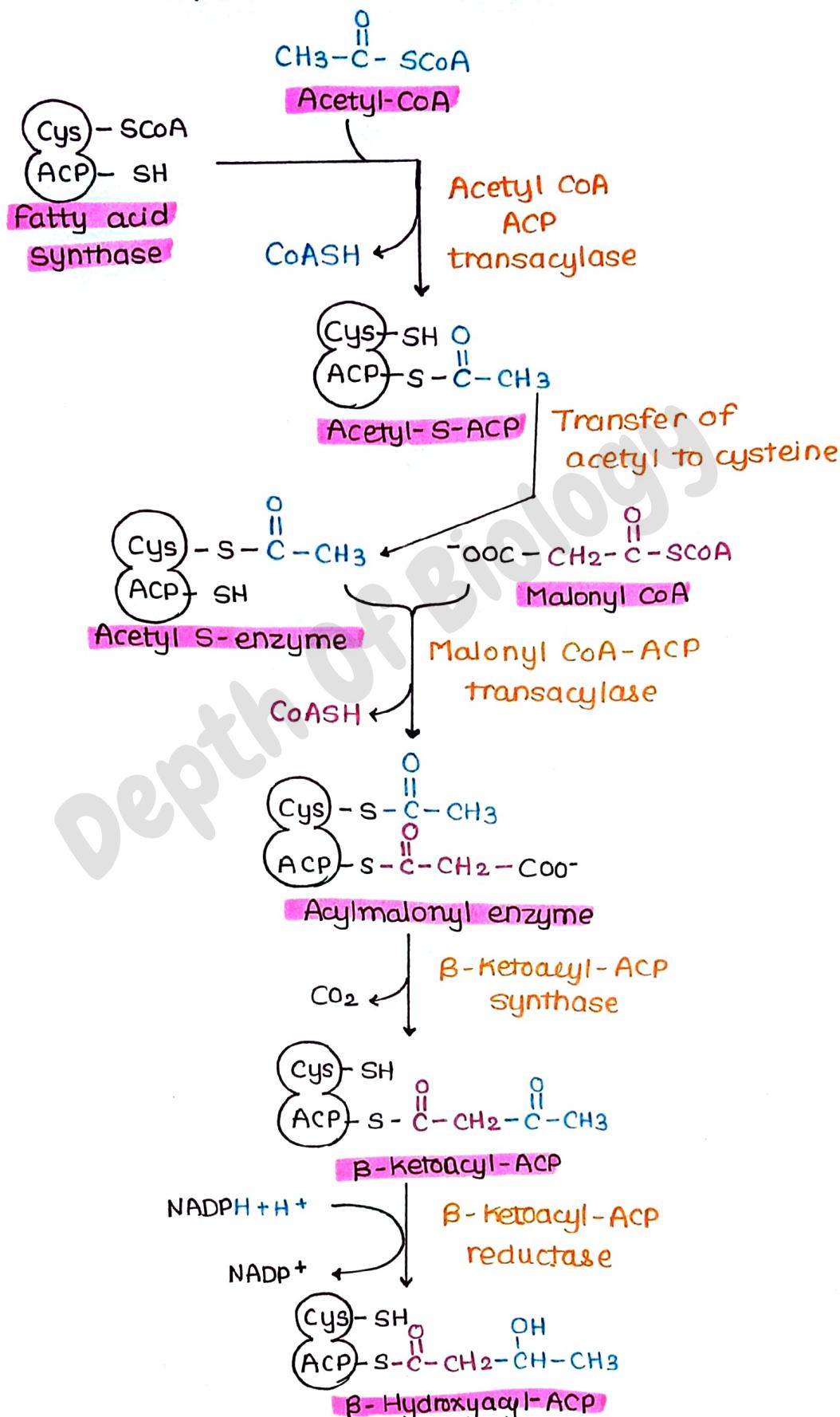
For more updates join DEPTH OF BIOLOGY APPLICATION

• **Phases of Fatty Acid Synthesis:**

- **Phase 1 : Formation of Malonyl-CoA**
- Acetyl-CoA is converted into malonyl-CoA by Acetyl-CoA carboxylase (ACC).
- This is the rate-limiting step and requires biotin (Vitamin B7) and ATP.

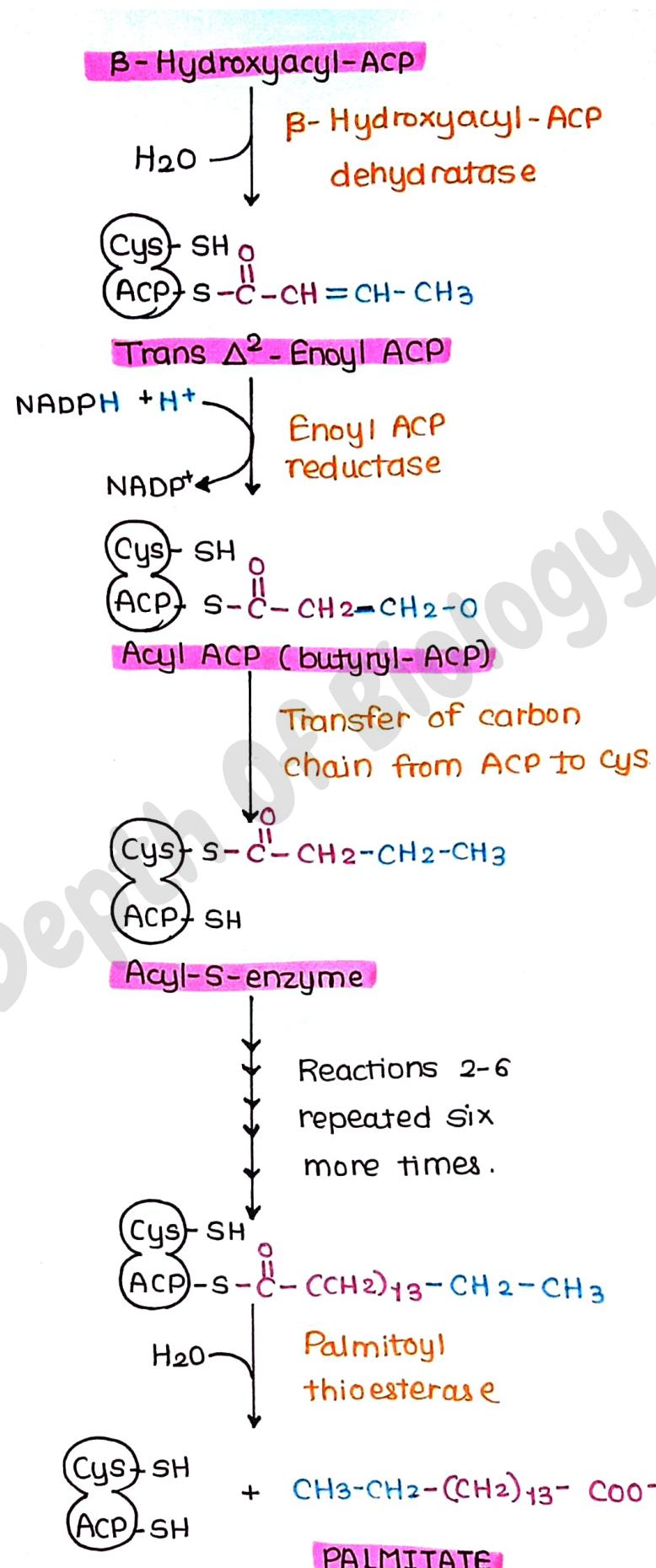
• **Regulation:**

- Activated by : Citrate, insulin
- Inhibited by : Long chain fatty acyl-CoA, glucagon.


• **Phase 2 : Fatty Acid Chain Elongation**

- Fatty acid synthase (FAS) is a large multifunctional enzyme with 7 enzymatic activities in a single polypeptide chain.
- Each round adds 2 carbons from malonyl-CoA.
- One acetyl-CoA + seven malonyl-CoA \rightarrow Palmitic acid (C_{16})

DEPTH OF BIOLOGY - Level up your studies with DOB


For more updates join DEPTH OF BIOLOGY APPLICATION

Synthesis of fatty acids.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

• Steps in One Cycle of Chain Elongation:

1. Priming :

Acetyl- CoA and malonyl- CoA are attached to ACP (acyl carrier protein).

2. Condensation :

Acetyl group (2c) and malonyl group (3c) combine, releasing CO_2 , forming a 4c unit.

3. Reduction :

NADPH reduces the β -keto group to β -hydroxy.

4. Dehydration :

Water is removed to form a double bond.

5. Second Reduction :

NADPH reduces the double bond to form a saturated acyl group.

6. Chain Transfer :

The growing chain is transferred back to enzyme for next cycle.

• This cycle repeats 7 times, each time adding 2 carbons, resulting in a 16-carbon palmitate chain.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- Overall Reaction for Palmitic Acid Synthesis:

- Source of NADPH:

- HMP shunt (Pentose phosphate pathway)
- Malic enzyme (Converts malate to pyruvate + NADPH).
- Transport of Acetyl-CoA from Mitochondria to Cytosol
- Acetyl-CoA is produced in mitochondria but fatty acid synthesis occurs in cytosol.
- Acetyl-CoA is converted to citrate, transported to cytosol and reconverted to Acetyl-CoA by ATP-citrate lyase.

- Regulation of Fatty Acid Synthesis:

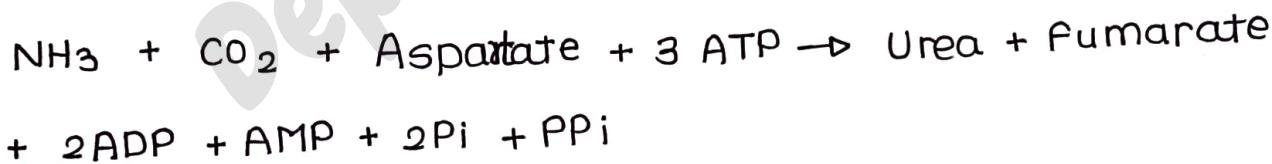
Regulator	Effect
Insulin	Stimulates (Activates Acetyl-CoA carboxylase)
Glucagon, Epinephrine	Inhibit synthesis
Citrate	Activates ACC
Long-chain fatty acyl-CoA	Feedback inhibition.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- Significance of De Novo Fatty Acid Synthesis:
- Provides fatty acids for :
 - Energy storage (triglycerides)
 - Membrane phospholipids
 - Lipids signaling molecules
- Active in fed state when excess carbohydrates are converted to fats.
- Helps in lipogenesis especially in liver and adipose tissue.
- Conclusion
- De Novo fatty acid synthesis is a cytosolic anabolic process by which acetyl-CoA is converted to palmitate using ATP and NADPH, regulated by hormonal and nutritional status.
- It plays a vital role in energy storage and lipid metabolism and is tightly regulated to maintain energy balance in the body.

DEPTH OF BIOLOGY - Level up your studies with DOB

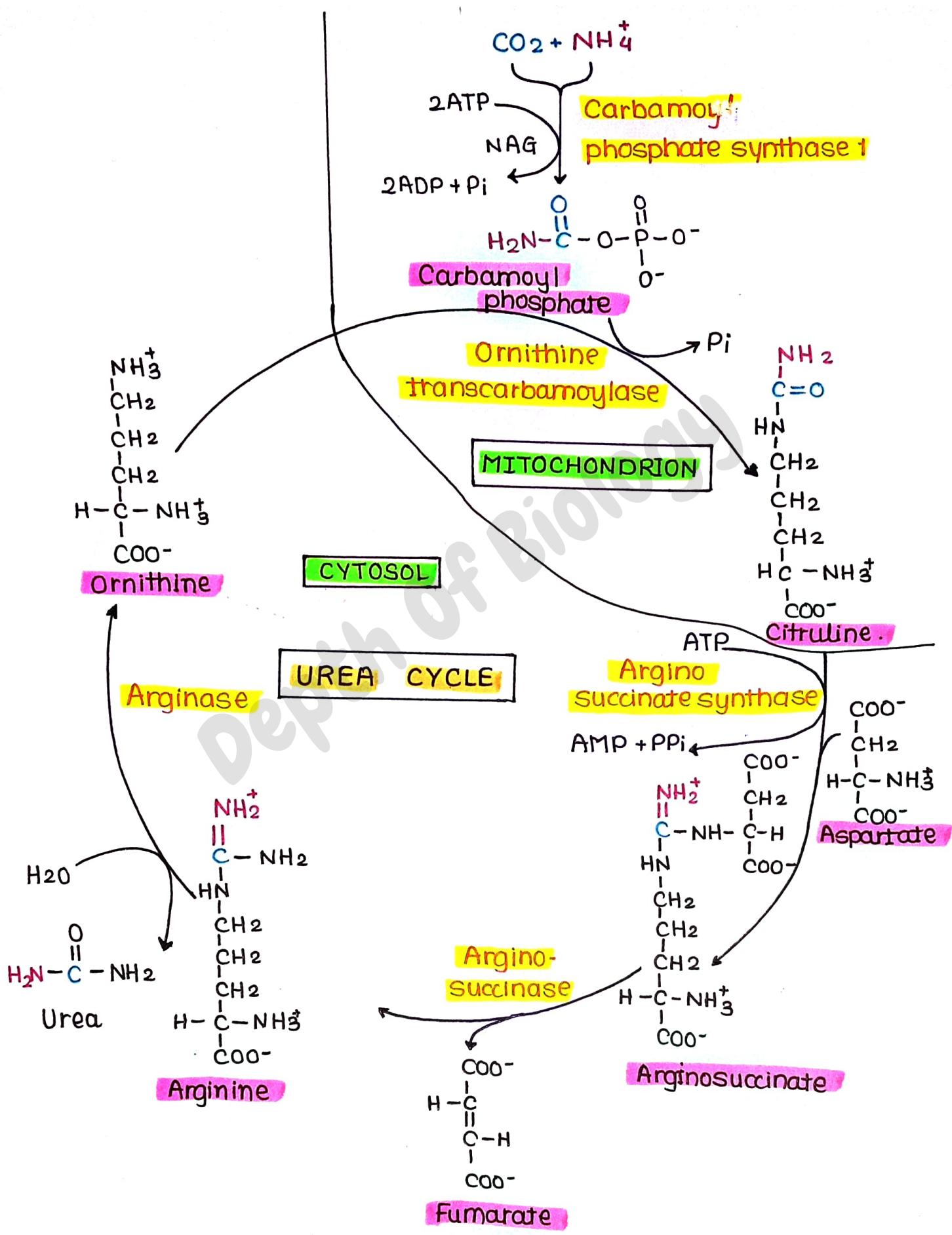

For more updates join DEPTH OF BIOLOGY APPLICATION

5 / 7 Marks Question

Q.1. Give a detailed note on Urea Cycle and its disorders.

⇒ **ANSWER:** **UREA CYCLE**

- The urea cycle (also known as the Krebs- Henseleit cycle) is the primary mechanism for the detoxification of ammonia, a toxic byproduct of amino acid metabolism.
- It occurs in the liver and converts ammonia to urea, which is excreted via urine.
- **Net Reaction:**



- The main precursors of the cycle are:
 - Ammonia (NH_3) : from deamination of amino acids
 - carbon dioxide (CO_2) : from cellular respiration .
 - Aspartate : provides the second Nitrogen atom in urea .

These substrates are essential for the formation of urea, the main nitrogenous waste product in humans .

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION


DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

Steps of Urea Cycle

Step	Reaction	Enzyme	Location
1.	$\text{NH}_3 + \text{CO}_3 + 2\text{ATP} \rightarrow \text{Carbamoyl phosphate}$	Carbamoyl phosphate synthetase I	Mitochondrion
2.	Carbamoyl phosphate + Ornithine \rightarrow Citrulline	Ornithine transcarbamoylase	Mitochondria
3.	Citrulline + Aspartate + ATP \rightarrow Arginino-succinate	Arginino-succinate synthetase	Cytosol
4.	Argininosuccinate \rightarrow Arginine + fumarate	Argininosuccinate lyase	Cytosol
5.	Arginine \rightarrow Urea + Ornithine	Arginase	Cytosol.

Net Reaction:

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- **Energetics:**

- 3 ATP used (equivalent to 4 high-energy phosphate bonds)
- Very energy-consuming, but essential for life.

- **Urea Cycle Disorders**

Disorder	Enzyme Deficiency	Features
CPS-I deficiency	Carbamoyl phosphate synthetase I	Hyperammonemia Type I
OTC Deficiency	Ornithine transcarbamoylase	Hyperammonemia Type II (x-linked)
Citrullinemia	Argininosuccinate synthetase	Citrulline in blood and urine.
Argininosuccinic aciduria	Argininosuccinate lyase	Hair abnormalities, hepatomegaly
Hyperargininemia	Arginase	Progressive spasticity and developmental delay

DEPTH OF BIOLOGY - Level up your studies with DOB

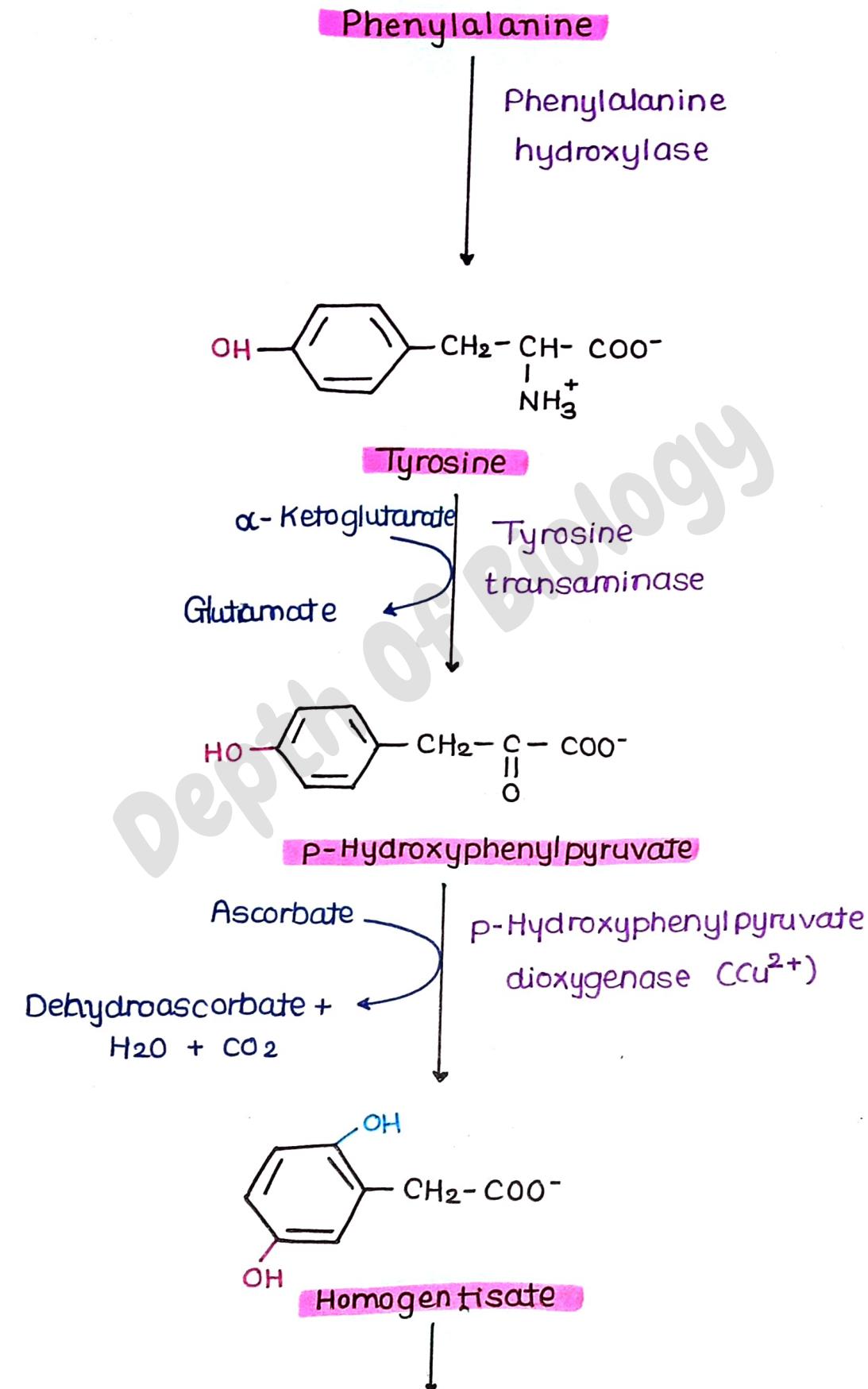
For more updates join DEPTH OF BIOLOGY APPLICATION

- **Clinical Features of UCDS:**

- Lethargy
- Vomiting
- Hyperammonemia
- Seizures
- Coma (in severe cases)

- **Treatment:**

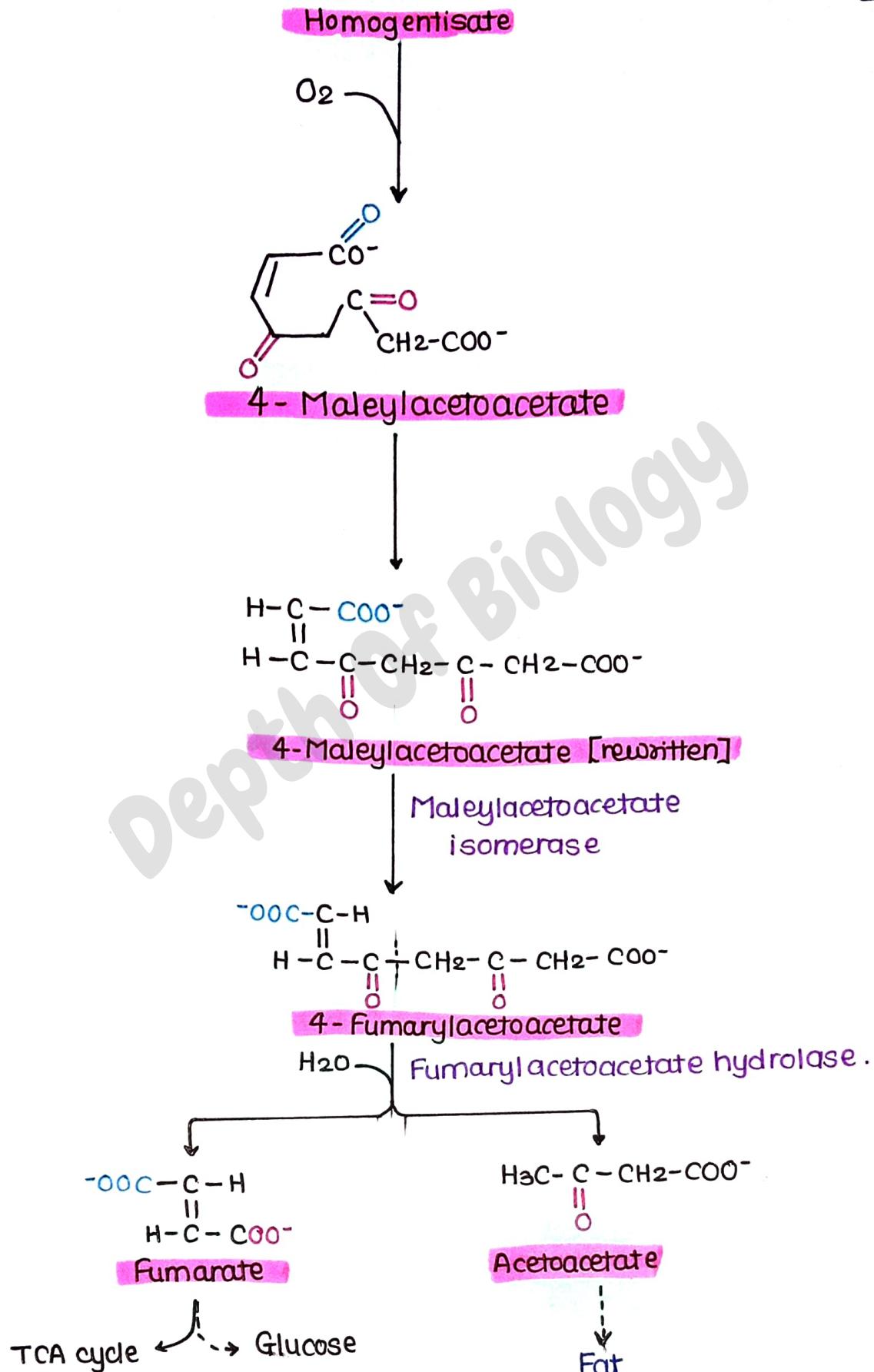
- Low-protein diet, sodium benzoate, phenylbutyrate, arginine supplementation.


Q.2 Explain catabolism of Phenylalanine and Tyrosine

→ **ANSWER** : Phenylalanine and tyrosine are aromatic amino acids.

- Phenylalanine is essential, while
- Tyrosine is non-essential, synthesized from Phenylalanine.
- Both are glucogenic and ketogenic and they are catabolized through a common pathway to form fumarate (glucogenic) and acetoacetate (ketogenic).

DEPTH OF BIOLOGY - Level up your studies with DOB


For more updates join DEPTH OF BIOLOGY APPLICATION

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

20.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

Stepwise Catabolism:

1. Phenylalanine \rightarrow Tyrosine

- Enzyme: Phenylalanine hydroxylase
- Cofactor: Tetrahydrobiopterin (BH4)
- Hydroxylation of phenylalanine at para-position.

2. Tyrosine \rightarrow p-Hydroxyphenylpyruvate

- Enzyme: Tyrosine transaminase (also called amino-transferase)
- Requires PLP (pyridoxal phosphate)
- α -ketoglutarate acts as amino group acceptor
 \rightarrow forms glutamate.

3. p-Hydroxyphenylpyruvate \rightarrow Homogentisate

- Enzyme: p-Hydroxyphenylpyruvate dioxygenase
- oxidative decarboxylation and hydroxylation occur.

4. Homogentisate \rightarrow Maleylacetoacetate

- Enzyme: Homogentisate oxidase
- Aromatic ring is cleaved.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

5. Maleylacetoacetate \rightarrow Fumarylacetoacetate

- Enzyme: Maleylacetoacetate isomerase
- Isomerization reaction.

6. Fumarylacetoacetate \rightarrow Fumarate + Acetoacetate

- Enzyme: Fumarylacetoacetate hydrolase
- Final step of cleavage into:
 - Fumarate \rightarrow enters TCA cycle \rightarrow Glucose.
 - Acetoacetate \rightarrow Ketone body.

• **Physiological importance:**

- Maintains energy balance during fasting.
- Provides intermediates for TCA cycle and ketogenesis.
- forms neurotransmitter precursors:
Dopamine, norepinephrine, epinephrine

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

Q.3 Metabolic Disorders of Catabolism of Phenylalanine and Tyrosine

→ **ANSWER:** Phenylalanine and tyrosine are metabolized through a common pathway that produces fumarate and acetoacetate.

- Any enzyme deficiency in this catabolic pathway leads to inborn errors of metabolism, many of which are autosomal recessive disorders.
- These disorders cause accumulation of toxic intermediates, leading to severe clinical symptoms.

- **Major Disorders :**

1. **Phenylketonuria (PKU)**

- Enzyme Deficiency : Phenylalanine hydroxylase (also may be due to deficiency of BH4 cofactor).
- Metabolic Defect : Phenylalanine is not converted to tyrosine and accumulates in the blood and tissues.
- The excess is converted to phenylpyruvate and other phenylketones, which are excreted in urine.
- Clinical features include severe mental retardation, developmental delay, seizures, eczema, hypopigmentation.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

of skin and hair and a characteristic mousy odor of urine.

- Early diagnosis by newborn screening and dietary restriction of phenylalanine prevents complications.

2. **Tyrosinemia Type I**

- This is due to deficiency of fumarylacetoacetate hydrolase, the final enzyme in tyrosine degradation.
- As a result, fumarylacetoacetate and its toxic derivatives (like succinylacetone) accumulate.
- Clinical manifestations include liver failure, renal tubular dysfunction, growth retardation, rickets and a cabbage-like odor of urine.

3. **Tyrosinemia Type II**

- This disorder is caused by deficiency of tyrosine aminotransferase.
- It leads to high levels of tyrosine in blood and tissues.
- Patients present with painful corneal ulcers, keratitis, hyperkeratotic skin lesions on palms and soles and intellectual disability.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

4. **Alkaptonuria**

- It results from deficiency of homogentisic acid oxidase.
- Homogentisic acid accumulates and is excreted in urine, which turns black on standing due to oxidation.
- Long-term deposition of homogentisic pigment in connective tissues produces ochronosis (bluish-black discoloration) and degenerative arthritis of large joints and spine.

5. **Albinism**

- Although primarily a defect in pigment synthesis, it is related to tyrosine metabolism.
- It is caused by absence or deficiency of tyrosinase an enzyme needed to convert tyrosine to melanin.
- This results in partial or complete lack of pigmentation in skin, hair and eyes with associated photophobia and visual defects.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

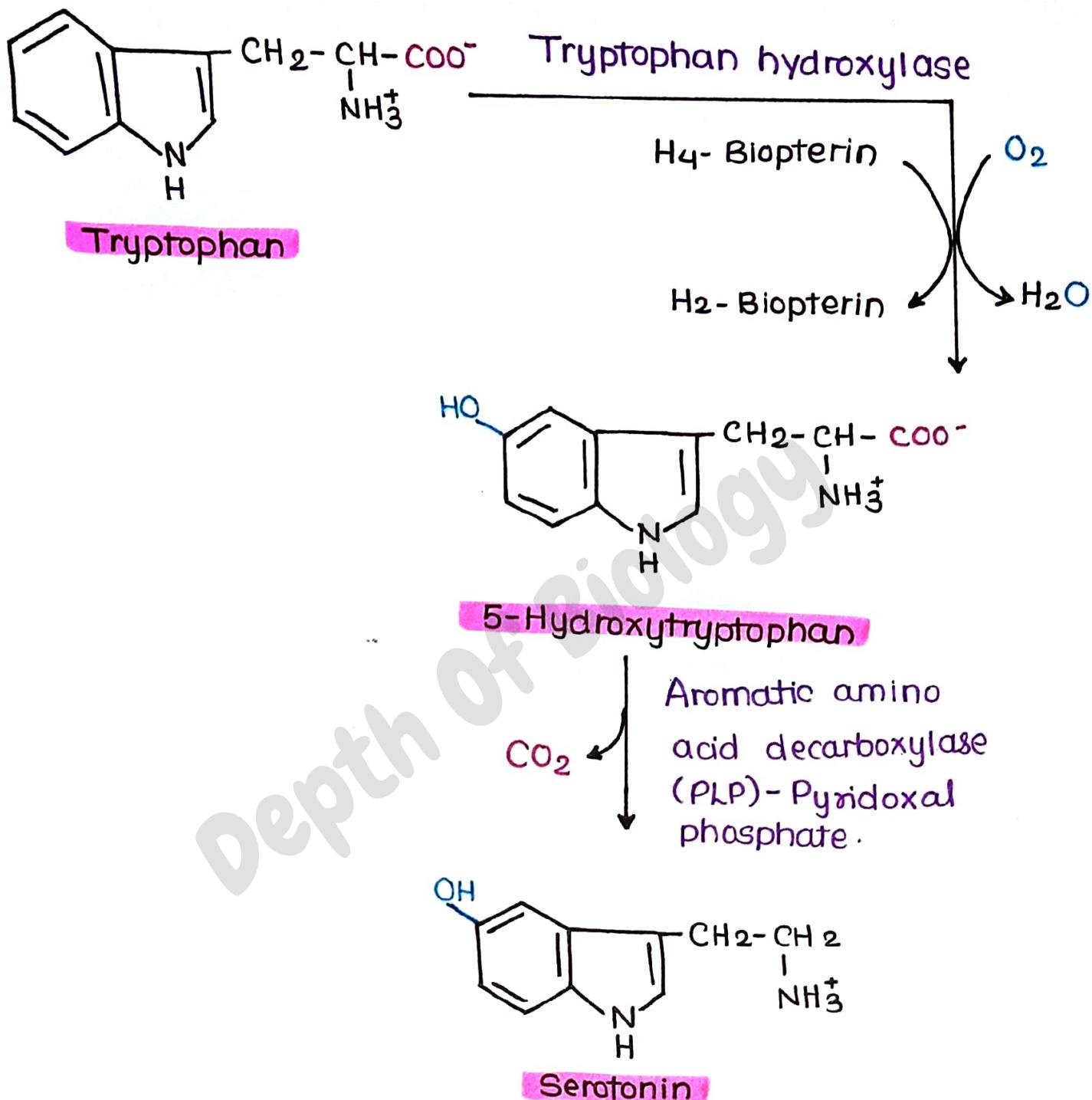
- These are mostly autosomal recessive and present early in life.
- They lead to accumulation of toxic metabolites that can affect the nervous system, skin, eyes, liver, kidneys and skeletal system.
- Early detection by newborn screening and prompt dietary or medical management can prevent irreversible complications.

Q.4. Write down the synthesis and biological significance of 5HT and dopamine

→ **ANSWER :**

- **Serotonin (5-Hydroxytryptamine, 5-HT)**
- **Synthesis:**

1. **Tryptophan** → **5-hydroxytryptophan**


- enzyme: tryptophan hydroxylase, needs BH₄, O₂

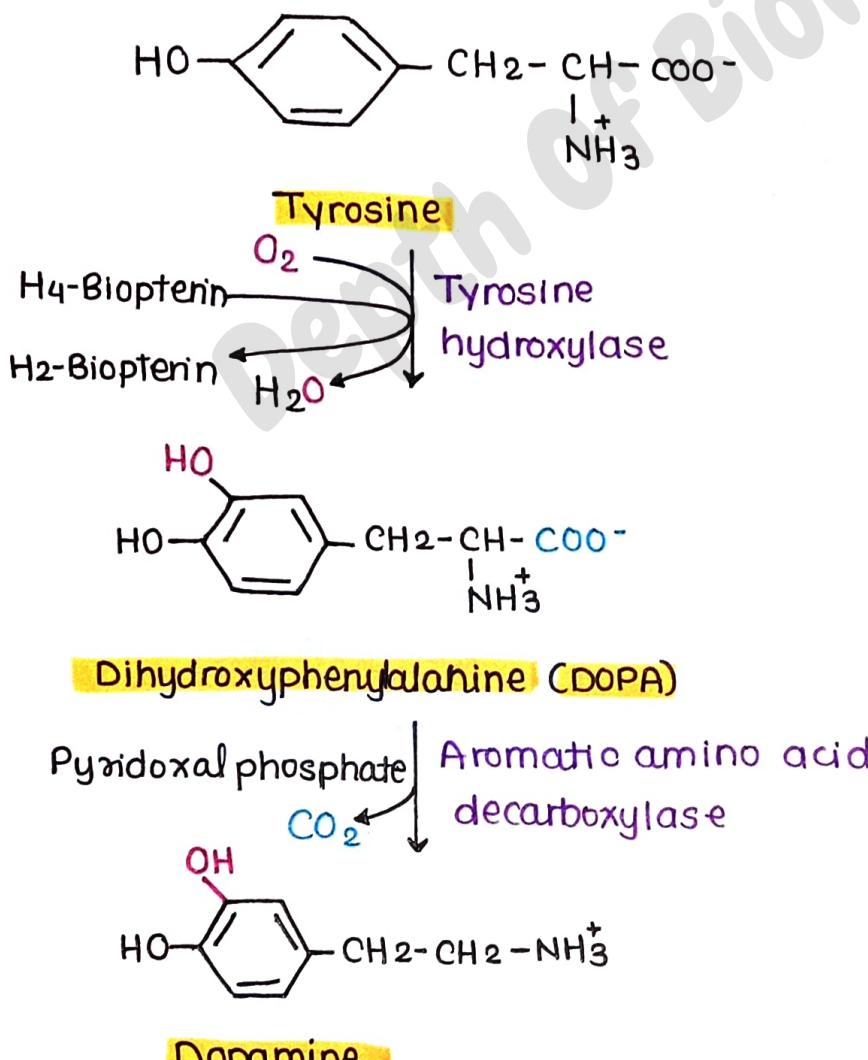
2. **5-hydroxytryptophan** → **Serotonin**

- enzyme: aromatic L-amino acid decarboxylase, needs PLP - Pyridoxal phosphate.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

Sites of synthesis :


- CNS neurons
- Enterochromaffin cells in intestine
- Platelets (uptake from plasma)

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- **Biological roles:**

- Neurotransmitter : mood , appetite , sleep regulation
- Controls intestinal motility .
- Vasoconstrictor role in platelets
- Precursor for melatonin in pineal gland .
- Dopamine ~ Synthesis

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- **Synthesis**

1. Tyrosine \rightarrow L-DOPA

Enzyme : tyrosin hydroxylase, needs BH4

2. L-DOPA \rightarrow Dopamine

Enzyme: aromatic L-amino acid decarboxylase,
needs PLP Pyridoxal phosphate

- **Sites**

- CNS : substantia nigra, hypothalamus.
- Peripheral sympathetic neurons

- **Biological Roles:**

- CNS neurotransmitter : movement control, reward, mood.
- Precursor for norepinephrine and epinephrine.
- Deficiency leads to Parkinson's disease.
- Excess: Schizophrenia (mesolimbic pathway overactivity)

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- Clinical Significance :
- Levodopa used for Parkinson's disease boosts dopamine synthesis.

Q.5. Explain Jaundice

→ **ANSWER :**

- **Jaundice** (also called icterus) is a yellow discolouration of the skin, sclera (white of eyes), and mucous membranes due to increased bilirubin levels in blood.
 - Normal serum bilirubin : 0.3 - 1.2 mg/dL
 - Jaundice becomes visible when bilirubin > 2 mg/dL.
- Pigment Responsible
- Bilirubin : a yellow pigment formed from the breakdown of heme in hemoglobin from old red blood cells (RBCs).
- Exists in two forms :
 - a. Unconjugated bilirubin
water-insoluble, bound to albumin.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

b. **conjugated bilirubin** -

water- soluble , formed in liver by conjugated with glucoronic acid .

• **Normal Bilirubin Metabolism**

• Causes of jaundice

1. Production

- Senescent RBCs destroyed in reticuloendothelial system (spleen, liver, bone marrow).
- Heme → Biliverdin (green) → Bilirubin (yellow).

2. Transport

- Unconjugated bilirubin binds to albumin in blood .

3. Hepatic Uptake

- Liver cells take bilirubin from blood .

4. Conjugation

- Enzyme : UDP- glucuronyl transferase.
- Converts bilirubin → bilirubin diglucoronide [water- soluble].

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

5. Excretion into Bile

- Conjugated bilirubin secreted into bile → Intestine.

6. Intestinal Changes

- Bacteria convert bilirubin → urobilinogen.
- Some urobilinogen reabsorbed, rest excreted as:
 - ▷ Urobilin in urine (yellow)
 - ▷ Stercobilin in feces (brown)

• Types of Jaundice

1. Pre-hepatic (Hemolytic) Jaundice

- Cause: Excess RBC breakdown → excess unconjugated bilirubin.
- Examples: Hemolytic anemia, malaria, sickle cell anemia.
- ↑ Unconjugated bilirubin
- Urine: No bilirubin (not water-soluble)
- Urine urobilinogen: ↑
- Stool: Dark brown (↑ stercobilin)

2. Hepatic (Hepatocellular) Jaundice

- Cause: Liver cell damage → impaired uptake, conjugated & excretion.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- Examples: Viral hepatitis, alcoholic liver disease, drug- induced hepatitis.
- ↑ Both conjugated and unconjugated bilirubin.
- Urine bilirubin : Present (dark urine)
- Urine urobilinogen : Variable
- Stool : Pale if cholestasis present.

3. Post-hepatic (Obstructive) Jaundice

Cause : Obstruction in bile ducts → conjugated bilirubin cannot reach intestine.

Examples: Gallstones, pancreatic cancer, bile duct.

- ↑ conjugated bilirubin
- Urine bilirubin : Present (dark urine)
- Urine urobilinogen: Absent
- Stool : Clay-colored
- Itching due to bile salts in skin.

4. Neonatal Jaundice

Cause: Immature liver enzyme

(UDP- glucuronyl transferase) in newborns → reduced conjugated.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- Usually physiological (normal), appears after 24 hours, resolves in 1-2 weeks.
- Pathological if severe → may cause Kernicterus (bilirubin in brain).
- Treatment: Phototherapy, exchange transfusion.

5. Hereditary Disorders Related to Jaundice.

- Gilbert's syndrome: mild decrease in bilirubin conjugation.
- Crigler- Najjar Syndrome: severe absence of conjugated enzyme.
- Dubin- Johnson syndrome: defect in excretion of conjugated bilirubin.

• Complications

- Chronic liver disease
- Fat malabsorption
- Vitamin K deficiency → Bleeding
- Brain damage in newborns (Kernicterus)
- Jaundice is not a disease by itself but a sign of underlying liver, blood or bile duct disorder.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

• 2/3 Mark Question / MCQ

• Q.1. Define obesity.

→ **ANSWER** • **OBESITY**

- Obesity is a medical condition in which there is an **excessive accumulation of body fat** that may harm health.
- It is most commonly measured by the Body Mass Index (BMI). A person is considered obese with **BMI** is equal to or greater than **30 kg/m²**.
- **Obesity may cause due to :**
 - Excessive intake of high-calorie food.
 - Lack of physical activity.
 - Genetic factors and hormonal imbalances.
- Thus, obesity is both a nutritional and metabolic disorder affecting millions worldwide.

Q.2. Describe Ketoacidosis

→ **ANSWER** : **KETOACIDOSIS**

- Ketoacidosis is a serious metabolic complication where there is **excessive production of ketone bodies**, leading to increased acidity (low pH) of blood.
- It mainly occurs in uncontrolled diabetes mellitus, especially type 1 diabetes, due to lack of insulin.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- **Process** :

- In absence of insulin, fat breakdown increases.
- This leads to formation of large amounts of ketone bodies (acetacetate, β -hydroxybutyrate, and acetone).
- Accumulation of these acids lowers blood pH.

- **Symptoms** :

- Nausea, vomiting.
- Deep and rapid breathing.
- Dehydration, confusion and in severe cases, coma.

- **Significance** :

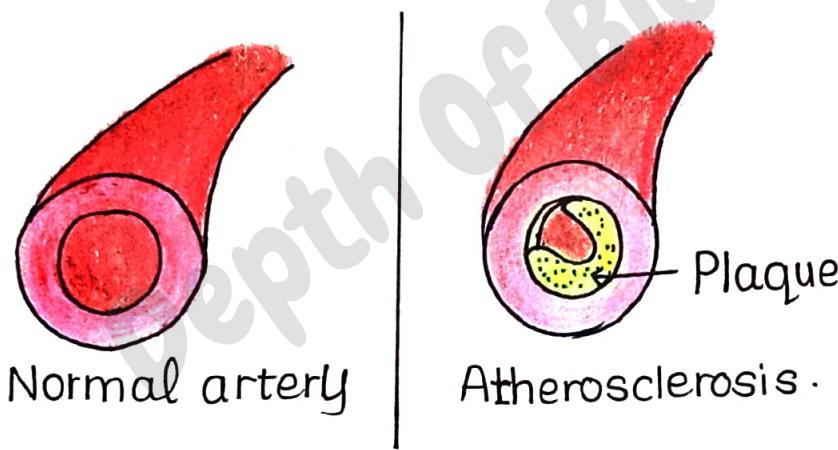
- Ketoacidosis requires immediate medical treatment to restore acid-base balance and correct blood glucose levels.

Q.3. Define atherosclerosis

→ **ANSWER** : **ATHEROSCLEROSIS** :

- Atherosclerosis is a chronic disease of the arteries in which there is **buildup** of **fatty deposits** called **plaques** on the **inner walls** of **arteries**.
- This process leads to thickening and hardening of arteries, narrowing the vessel lumen and reducing blood flow.

DEPTH OF BIOLOGY - Level up your studies with DOB


For more updates join DEPTH OF BIOLOGY APPLICATION

- **Steps involved :**

- Injury to endothelium (inner lining of artery).
- Accumulation of lipids (mainly cholesterol).
- Infiltration by white blood cells (macrophages).
- Formation of fibrous plaque.

- **Consequences :**

- Reduced blood supply to organs.
- Can cause heart attack (myocardial infarction), stroke and peripheral vascular disease

Q.4. Define transmutation

[Transamination/
Deamination/ Decarboxylation]

→ **ANSWER :** **TRANSMUTATION**

- **Definition :** Transmutation is the process of changing one chemical element or isotope into another by altering the number of protons in its atomic nucleus.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- **Transamination**: Transfer of amino group from an amino acid to a keto acid.
(enzyme : aminotransferase, needs PLP).
- Example: Alanine + α -keto glutarate \leftrightarrow pyruvate + glutamate.
- **Deamination**: Removal of amino group as ammonia.
- Example: Glutamate \rightarrow α -ketoglutarate + NH₃
(Enzyme: glutamate dehydrogenase).
- **Decarboxylation**: Removal of CO₂ from amino acids forming amines.
- Example: Histidine \rightarrow Histamine
- Enzyme: histidine decarboxylase, needs PLP

Q.5. What is Albinism

⇒ **ANSWER** :

- Genetic disorder with complete or partial lack of melanin in skin, hair, eyes.
- Cause : Deficiency of tyrosinase enzyme in melanin synthesis.

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- Features: Pale skin, white hair, pink eyes, photophobia, poor vision.
- Complications: Sunburn, high risk of skin cancer.

Q.6. Biological Significance of Cholesterol and Vitamin D

→ **ANSWER**:

- **Significance of Cholesterol**:
 - Cell membrane component (fluidity, stability)
 - Precursor for bile acids, steroid hormones, vitamin D.
 - Transported in plasma lipoproteins.
- **Significance of Vitamin D**:
 - Regulates calcium and phosphorous absorption.
 - Maintains bone mineralization.
 - Deficiency: rickets (children), osteomalacia (adults).

DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

Q.7. What is Hyperbilirubinemia

→ **ANSWER** :

- **Definition** : Elevated bilirubin in blood ($> 1.2 \text{ mg/dL}$ in adults).
- **Types** : Unconjugated (hemolysis, Gilbert's syndrome) and conjugated (obstruction, hepatitis).
- **Significance** : Main cause of jaundice; guides diagnosis of liver and biliary diseases.