

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## UNIT- IV

10 / 15 Marks

**Q.1. Explain Catabolism of Purine Nucleotide.**

→ **ANSWER** : Introduction:

- Purine nucleotides (AMP, GMP, IMP) are continuously synthesized and degraded in the body.
- Degradation is essential to :
  - Recycle nitrogen bases.
  - Maintain uric acid balance.
  - Provide intermediates for other pathways.
- In humans, the end product of purine catabolism is uric acid, which is excreted in urine.

### 1. Overview of Purine Catabolism

- The pathway involves the degradation of nucleic acids (DNA/RNA) → nucleotides → nucleosides → free bases → uric acid.
- The major intermediates are adenosine, inosine, hypoxanthine, xanthine and uric acid.

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## 2. Major Steps of Purine Catabolism

### Step 1 : Degradation of Nucleic Acids.

- DNA and RNA are degraded by endonucleases and exonucleases to yield mononucleotides (AMP, GMP).

Enzymes involved :

- Deoxyribonuclease (DNase) → acts on DNA.
- Ribonuclease (RNase) → acts on RNA.

▪ Reactions :



### Step 2 : Conversion of Nucleotides to Nucleosides.

- 5'-Nucleotidases remove the phosphate group.

Reactions :

- AMP → Adenosine + Pi
- GMP → Guanosine + Pi

Enzyme : Nucleotidase

### 3. Step : Conversion of Nucleosides to free Purine Bases

| Substrate   | Enzyme                                  | Product      |
|-------------|-----------------------------------------|--------------|
| • Adenosine | • Adenosine deaminase (ADA)             | Inosine      |
| • Guanosine | • Purine nucleoside phosphorylase (PNP) | Guanine      |
| • Inosine   | • Purine nucleoside phosphorylase (PNP) | Hypoxanthine |

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- Adenosine first loses an amino group ( $\text{NH}_2$ ) to form inosine.
- Inosine is cleaved to produce hypoxanthine, while guanosine gives guanine.
- Step 4: Conversion of Bases to Xanthine.

| Base         | Enzyme            | Product  |
|--------------|-------------------|----------|
| Hypoxanthine | Xanthine oxidase  | Xanthine |
| Guanine      | Guanine deaminase | Xanthine |

- Thus, both adenine and guanine derivatives converge at xanthine, which is the common intermediate.
- Step 5: Formation of Uric Acid

- Reaction:  $\text{Xanthine} + \text{O}_2 + \text{H}_2\text{O} \rightarrow \text{Uric acid} + \text{H}_2\text{O}_2$ .
- Enzyme: Xanthine oxidase (contains molybdenum and iron).
- Site: Mainly in the liver and small intestine.
- Uric acid is only slightly soluble in water.
- It is carried in plasma and excreted by the kidneys through urine.

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- End Product of Purine Catabolism : Uric acid in Human and higher primates.

## ▣ Fate of Uric Acid

- Uric acid circulates in plasma (3-7 mg/dL).
- Excreted mainly via urine; a small amount via sweat.
- It acts as a powerful antioxidant in plasma.
- When serum uric acid levels rise, crystals of sodium urate may deposit in joints causing gout.
- Regulation of Purine Catabolism
- Controlled mainly by availability of substrates (AMP, GMP) and enzyme activities like ADA and xanthine oxidase.
- High uric acid inhibits xanthine oxidase activity to prevent overproduction.
- Clinical Significance of Purine Catabolism

### a) Gout

- A metabolic disorder characterized by excess urine acid (hyperuricemia) and deposition of urate crystals in joints.
- Treatment: • Allopurinol (xanthine oxidase inhibitor) reduces uric acid production.
- Colchicine relieves inflammation.

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

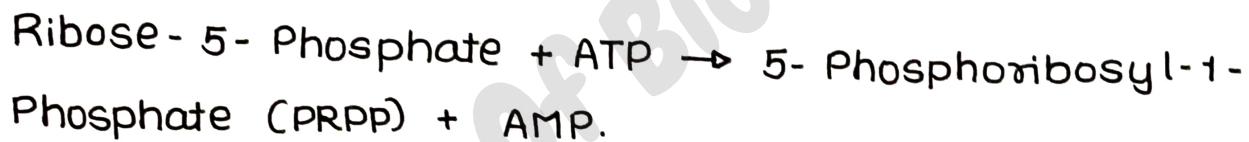
## b) Severe Combined Immunodeficiency (SCID)

- Caused by Adenosine deaminase (ADA) deficiency.
- Accumulation of deoxyadenosine and dATP inhibits DNA synthesis in lymphocytes → immunodeficiency.
- Treatment: Bone marrow transplant or gene therapy.
- **Conclusion**
- Purine catabolism is essential for maintaining nucleotide balance and preventing toxic accumulation.
- The final product, uric acid, though useful as an antioxidant, becomes harmful in excess.
- Understanding this pathway helps in the diagnosis and treatment of gout, SCID and related metabolic disorders.
- Enzymes like xanthine oxidase, ADA and Hypoxanthine-Guanine Phosphoribosyl transferase play crucial roles & are targets of pharmacological therapy.

Hypoxanthine-Guanine Phosphoribosyl transferase

## Q.2 Explain the Biosynthesis of Purine and Pyrimidine Nucleotides

→ **ANSWER** : Introduction


- Nucleotides are the structural units of nucleic acids (DNA & RNA).
- They consist of a nitrogenous base (purine or pyrimidine) a pentose sugar (ribose or deoxyribose) and a phosphate group.
- Nucleotide biosynthesis is essential for cell growth, repair and genetic information transfer.
- There are two major types :
  - Purine nucleotides - Adenine and Guanine.
  - Pyrimidine nucleotides - Cytosine, Thymine & Uracil.
- Nucleotides are synthesized in two ways :
  1. De novo synthesis - from small precursor molecules
  2. Salvage pathway - reuse of bases from degraded nucleic acids.

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## A. BIOSYNTHESIS OF PURINE NUCLEOTIDES

- The pathway begins with Ribose-5-phosphate an intermediate of the Pentose Phosphate Pathway.
- This is converted into 5-Phosphoribosyl-1-Pyrophosphate (PRPP) by the enzyme Phosphoribosyl Pyrophosphate Synthetase (PRPP synthetase).
- Reaction



### ■ Steps in De Novo Purine Nucleotide Synthesis.

- The entire pathway involves a series of ten enzymatic reactions.
- Each step gradually builds the purine ring on the ribose moiety of PRPP 5-Phosphoribosyl-1-phosphate.

#### Step 1 : Formation of 5-Phosphoribosylamine

- Enzyme : Amidophosphoribosyl Transferase.
- Reaction: 5- Phosphoribosyl-1- Pyrophosphate (PRPP) + Glutamine  $\longrightarrow$  5- phosphoribosylamine + Glutamate + Pyrophosphate.

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- Step 2 : Addition of Glycine

- Enzyme : Glycinamide Ribonucleotide Synthetase (GAR synthetase).

- Glycine contributes three atoms (C<sub>4</sub>, C<sub>5</sub>, N<sub>7</sub>) to form Glycinamide Ribonucleotide (GAR).

- Step 3 : Formylation of GAR

- Enzyme : GAR Transformylase

- Donor : N<sup>10</sup>- Formyl-Tetrahydrofolate (N<sup>10</sup>- Formyl-THF)

- Product : Formylglycinamide Ribonucleotide (FGAR).

- Step 4 : Addition of Nitrogen from Glutamine.

- Enzyme : FGAM Synthase [Formylglycinamidine synthase]

- Formylglycinamide Ribonucleotide (FGAR) + ATP.  
(FGAM synthetase)      ↓



- Step 5 : Cyclization to form AIR (5-Aminoimidazole Ribonucleotide).

- Enzyme : AIR (5-Aminoimidazole Ribonucleotide Synthetase).

- Product : 5-Aminoimidazole Ribonucleotide (CAIR).

- Step 6 : Carboxylation of AIR.

- Enzyme : AIR Carboxylase.

- AIR + CO<sub>2</sub> → 5- Carboxyaminoimidazole Ribonucleotide (CCAIR)

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- Step 7 : Addition of Aspartate

Enzyme: 5-Aminoimidazole-4-succinocarboxamide Ribonucleotide Synthetase (SAICAR synthetase).

- Product : 5- Aminoimidazole - 4- succinocarboxamide Ribonucleotide (SAICAR).

- Step 8 : Removal of Fumarate

Enzyme: Adenylosuccinase

- Reaction : SAICAR  $\rightarrow$  5- Aminoimidazole- 4- Carboxamide Ribonucleotide (AICAR) + Fumarate.

- Step 9 : Addition of Formyl Group.

Enzyme: 5-Aminoimidazole- 4- carboxamide Ribonucleotide Transformylase (AICAR transformylase).

- AICAR + N<sup>10</sup>- Formyl- Tetrahydrofolate (N<sup>10</sup>- Formyl - THF)  $\rightarrow$  5- Formamidoimidazole- 4- carboxamide Ribonucleotide (FAICAR).

- Step 10 : Cyclization to form IMP

- Enzyme: IMP Cyclohydrolase

- Reaction: FAICAR  $\rightarrow$  Inosine Monophosphate (IMP), which contains purine base hypoxanthine.

## □ Regulation of Purine Biosynthesis

1. Feedback Inhibition : The enzyme Amidophosphoribosyl Transferase is inhibited by end products AMP, GMP & IMP.

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## 2. Balancing mechanism :

- AMP synthesis requires Guanosine Triphosphate (GTP) as an energy source.
- GMP synthesis requires Adenosine Triphosphate (ATP) as an energy source.
- This cross-regulation maintains balance between AMP and GMP levels.

## B. BIOSYNTHESIS OF PYRIMIDINE NUCLEOTIDE

- Introduction
- Pyrimidine nucleotides are essential components of DNA and RNA.
- Pyrimidine bases include Cytosine (C), Thymine (T) and Uracil (U).
- Unlike purine biosynthesis (where the purine ring is built on the sugar 5-Phosphoribosyl-1-Pyrophosphate (PRPP)), in pyrimidine biosynthesis, the pyrimidine ring is first formed independently and then attached to Ribose-5-Phosphate through PRPP.
- The first formed nucleotide in the pyrimidine pathway is Uridine Monophosphate (UMP).

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## Stepwise Reactions of De Novo Pyrimidine Biosynthesis

### Step 1: Formation of Carbamoyl Phosphate

Enzyme: Carbamoyl Phosphate Synthetase II (CPSII)

Reaction: Glutamine + Carbon dioxide ( $\text{CO}_2$ ) + 2 Adenosine Triphosphate (ATP)  $\longrightarrow$  Carbamoyl Phosphate + Glutamate + 2 Adenosine Diphosphate (ADP) +  $\text{Pi}$ .

### Step 2: Formation of Carbamoyl Aspartate.

Enzyme: Aspartate Transcarbamoylase (ATCase).

Reaction: Carbamoyl Phosphate + Aspartate  $\longrightarrow$  Carbamoyl Aspartate +  $\text{Pi}$ .

This step joins the carbamoyl group with the amino acid Aspartate to begin forming pyrimidine ring.

### Step 3: Cyclization to Dihydroorotate

Enzyme: Dihydroorotase

Reaction: Carbamoyl Aspartate  $\longrightarrow$  Dihydroorotate +  $\text{H}_2\text{O}$

The enzyme closes the ring to form the dihydropyrimidine structure.

## DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- Step 4 : Oxidation to Orotate
- Enzyme : Dihydroorotate Dehydrogenase
- Reaction : Dihydroorotate + Nicotinamide Adenine Dinucleotide ( $\text{NAD}^+$ )  $\longrightarrow$  orotate + Nicotinamide Adenine Dinucleotide Reduced ( $\text{NADH} + \text{H}^+$ )
- Step 5 : Formation of Orotidine Monophosphate (OMP)
- Enzyme : Orotate Phosphoribosyltransferase
- Reaction : Orotate + 5- Phosphoribosyl- 1- Pyrophosphate (PRPP)  $\longrightarrow$  Orotidine Monophosphate (OMP) + Pyrophosphate (PP<sub>i</sub>)
- Step 6: Decarboxylation to form Uridine Monophosphate (UMP)
- Enzyme : Orotidine-5'-Monophosphate Decarboxylase
- Reaction : Orotidine Monophosphate (OMP)  $\longrightarrow$  Uridine Monophosphate (UMP) +  $\text{CO}_2$
- This reaction completes formation of first pyrimidine nucleotide Uridine Monophosphate (UMP).

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## • Regulation of Pyrimidine Biosynthesis

### 1. Carbamoyl Phosphate Synthase II (CPS II) :

- Inhibited by: Uridine Triphosphate (UTP)
- Activated by: ATP and 5-Phosphoribosyl-1'-Pyrophosphate (PRPP).

### 2. Balancing Purine and Pyrimidine Levels:

- When ATP levels are high, Pyrimidine synthesis is stimulated to maintain equilibrium between purine and pyrimidine nucleotides for DNA & RNA synthesis.
- Conclusion
- The biosynthesis of purine and pyrimidine nucleotides is vital for the formation of nucleic acids, energy molecules and coenzymes.
- Both pathways are tightly regulated and clinically significant, as their disturbances lead to metabolic disorders like gout, Lesch-Nyhan syndrome and orotic aciduria.

**DEPTH OF BIOLOGY - Level up your studies with DOB**  
 For more updates join DEPTH OF BIOLOGY APPLICATION

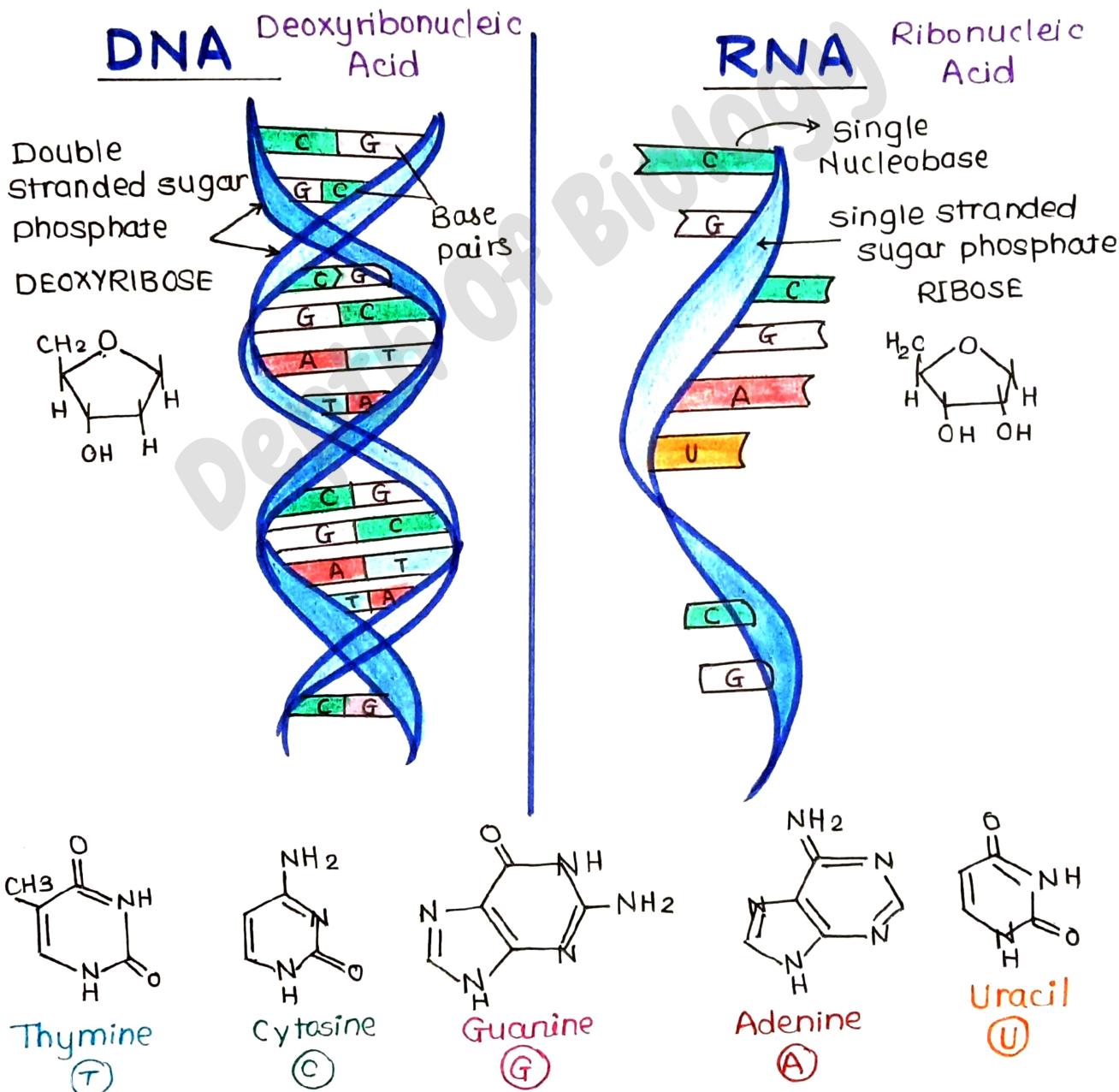
## 5 / 7 Marks Questions

**Q.1 Write down the structure & Functions of DNA & RNA.**

→ **ANSWER** : Introduction

- DNA and RNA are nucleic acids that store and transfer genetic information essential for cell growth, development and protein synthesis.
- Structure of DNA

### A] Chemical Components


- Sugar : Deoxyribose
- Nitrogen Bases : Adenine (A), Guanine (G), cytosine (C), Thymine (T).
- Phosphate group forms backbone.
- Base Pairing : A-T (2 hydrogen bonds)  
 G-C (3 hydrogen bonds).

## DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## B] Double Helix Model (Watson &amp; Crick, 1953):

- Two antiparallel strands coiled into a right-handed helix.
- one complete turn has 10 Base pairs ( $34\text{ \AA}$  length).
- Backbone  $\rightarrow$  sugar-phosphate ; Bases  $\rightarrow$  inside forming hydrogen bonds.



# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## ▪ Structure of RNA

### A] Components:

- Sugar: Ribose
- Bases: Adenine, Guanine, Cytosine, Uracil [Instead of Thymine].
- Usually single-stranded

### B] Types of RNA

| Type   | Full form     | Function                                                  |
|--------|---------------|-----------------------------------------------------------|
| • mRNA | Messenger RNA | Carries genetic code from DNA to ribosome.                |
| • tRNA | Transfer RNA  | Brings amino acids to ribosome.                           |
| • rRNA | Ribosomal RNA | Forms ribosome structure and catalyzes protein synthesis. |

### ▪ Conclusion:

- DNA is the genetic material and RNA is the functional molecule that helps in expressing genetic information through protein synthesis.

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## Q.2. Define DNA Replication (Semi-Conservative Model).

→ **ANSWER** : Introduction

- DNA replication is the biological process of producing two identical copies of DNA from one original DNA molecule.
- It ensures that genetic information is accurately passed from parent to daughter cells during cell division.
- **Definition**
- DNA replication is defined as the process by which a double-stranded DNA molecule duplicates itself in a semi-conservative manner, where each daughter DNA contains one parental (old) and one newly synthesized (new) strand.
- **Experimental Proof (Meselson - Stahl Experiment, 1958).**
  - Conducted using Escherichia coli (E.coli) grown in Nitrogen-15 ( $^{15}\text{N}$ ) heavy isotope medium.
  - After replication in Nitrogen-14 ( $^{14}\text{N}$ ) medium, the DNA density was intermediate, proving semi-conservative nature.

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- Each new DNA molecule has one old and one new strand.

## Steps in DNA Replication

### Step 1 : Initiation

- Occurs at a specific region called the Origin of Replication (ORI site)
- Helicase enzyme unwinds the double helix.
- Single-strand binding proteins (SSBPs) stabilize the unwound strands.
- Topoisomerase enzyme prevents supercoiling ahead of fork.

### Step 2 : Primer Formation

- Primase enzyme synthesizes a short RNA primer complementary to the DNA template.
- Primer provides a free 3'-OH (3 prime hydroxyl) end for DNA synthesis.

### Step 3 : Elongation

- DNA Polymerase III extends the primer by adding deoxyribonucleotides. (A, T, G, C).

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- New DNA strand grows in  $5' \rightarrow 3'$  direction.
- One strand (leading strand) is synthesized continuously and the other (lagging strand) is synthesized discontinuously in small fragments called Okazaki fragments.
- Step 4 : Primer Removal and Gap filling .
- DNA Polymerase I removes RNA primers and replaces them with DNA nucleotides .
- Step 5 : Ligation
- DNA Ligase enzyme joins Okazaki fragments to form a continuous strand on the lagging side .

□ **Conclusion :**

- DNA replication is an accurate and enzyme-controlled process that maintains genetic stability across generations .

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## Q.3. Define Transcription / RNA Synthesis

→ **ANSWER** : Introduction

- Transcription is the biological process of synthesizing RNA (Ribonucleic Acid) using DNA (Deoxyribonucleic Acid) as a template. It is the first step of gene expression, where genetic information from DNA is copied into messenger RNA (mRNA).
- Definition**
- Transcription is defined as the process in which a specific segment of DNA serves as a template to form a complementary RNA strand by the action of the enzyme RNA Polymerase.
- Site and Direction
- Occurs in the nucleus of eukaryotic cells (in cytoplasm for prokaryotes).
- RNA synthesis proceeds in the  $5' \rightarrow 3'$  direction (five prime to three prime direction).
- Only one strand of DNA acts as a template (template strand) the other is the coding (sense) strand.

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- **Types of RNA Produced**

1. **Messenger RNA (mRNA) :**

- Carries genetic code from DNA to ribosome.

2. **Transfer RNA (tRNA) :**

- Transports amino acids for protein synthesis.

3. **Ribosomal RNA (rRNA) :**

- Combines with proteins to form ribosomes.

- **Enzymes Involved**

- The key enzyme is RNA Polymerase, which synthesizes RNA using ribonucleoside triphosphates (ATP, GTP, CTP, UTP).

- In prokaryotes, there is a single RNA Polymerase.

- In eukaryotes, there are three types:

- RNA Polymerase I: Synthesizes rRNA

- RNA Polymerase II: Synthesizes mRNA

- RNA Polymerase III: Synthesizes tRNA.

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- **Steps in Transcription**

- **Step 1 : Initiation**

- RNA Polymerase binds to a specific DNA sequence called the promoter region (e.g. TATA Box).
- DNA strands unwind locally to expose the template strand.

- **Step 2 : Elongation**

- Ribonucleotides (GTP, ATP, CTP, UTP) are added complementary to the DNA template :
- $A \rightarrow U$  ,  $T \rightarrow A$  ,  $C \rightarrow G$  ,  $G \rightarrow C$
- The RNA chain elongations in  $5' \rightarrow 3'$  direction .

- **Step 3 : Termination**

- When RNA Polymerase reaches a terminator sequence, the newly formed RNA is released.
- The DNA helix formed .

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- Post- Transcriptional Modifications (in Eukaryotes only)
- After transcription, the primary RNA transcript (hnRNA - heterogeneous nuclear RNA) undergoes modifications :
  1. **Capping**: Addition of a methylated guanine cap at the 5' end.
  2. **Tailing**: Addition of poly- adenine (Poly-A) tail at the 3' end.
  3. **Splicing**: Removal of non-coding sequences (introns) and joining of coding sequences (exons).
- **Conclusion**
  - Transcription is the first and most important step in gene expression, converting the genetic message from DNA into RNA for protein formation.

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## Q.4. Explain Protein Synthesis

→ **ANSWER** : Introduction

- Protein synthesis, also called translation, is the process by which genetic information present in messenger RNA (mRNA) is converted into a specific sequence of amino acids, resulting in the formation of a functional protein molecule.
- It takes place on the ribosomes in the cytoplasm.
- 1. **Definition** : Protein synthesis is defined as the translation of the nucleotide sequence of mRNA into a polypeptide chain of amino acids with the help of ribosomes, tRNA & rRNA.
- Site and Components Required.

| Component          | Function                                                        |
|--------------------|-----------------------------------------------------------------|
| mRNA               | Carries genetic code from DNA to ribosome.                      |
| tRNA               | Brings specific amino acids to the ribosome                     |
| rRNA               | Forms structure of ribosome & catalyzes peptide bond formation. |
| Amino acids        | Building blocks of proteins.                                    |
| Enzymes            | Catalyze various steps (e.g. Aminoacyl-tRNA synthetase).        |
| Energy (ATP & GTP) | Required for activation & binding steps.                        |

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## Steps of Protein Synthesis

- Step 1 : Activation of Amino acids
- Each amino acid reacts with ATP in presence of the enzyme Aminoacyl-tRNA synthetase to form an Aminoacyl-AMP complex.
- Then, the amino acid is transferred to its specific tRNA forming Aminoacyl-tRNA (charged tRNA).

## Reaction



- Step 2 : Initiation
- The small ribosomal subunit attaches to the 5' end of the mRNA at the start codon AUG (Adenine-Uracil-Guanine).
- The initiator tRNA carrying Methionine (Met) binds to this codon.
- The large ribosomal subunit then joins to form the complete initiation complex.

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## Step 3 : Elongation

- The next Aminoacyl-tRNA binds to the next codon in the A site (Aminoacyl site) of the ribosome.
- The enzyme Peptidyl Transferase (present in large rRNA) forms a peptide bond between first and second amino acids.
- The ribosome then moves (translocates) along mRNA to next codon.

## Step 4 : Termination

- When the ribosome reaches a stop codon (UAA, UAG or UGA) no tRNA binds.
- Release factors bind instead and the completed polypeptide chain is released from the ribosome.
- The ribosomal subunits separate and are reused.

## Step 5 : Post- Translational Modifications

- After release, the new polypeptide undergoes modifications like :
  - Folding into proper shape

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- Cleavage or removal of signal peptides.
- Addition of prosthetic groups or carbohydrates.
- These changes help the protein become fully functional.
- Conclusion
- Protein synthesis is an energy-dependent, enzyme-controlled process that accurately converts genetic information into functional proteins essential for life processes.

## Q.5. Define Genetic Code

→ **ANSWER**: Introduction

- The genetic code is the set of rules by which the sequence of nucleotides in messenger RNA (mRNA) determines the sequence of amino acids in a protein.
- It is a universal language of life, used by all living organisms to translate genetic information into functional proteins.

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- **Definition**
- The genetic code is defined as the relationship between the sequence of nitrogen bases in mRNA and the sequence of amino acids in a polypeptide chain.

## **Basic unit of Genetic Code - Codon**

- A codon is a sequence of three nucleotides (triplet) on mRNA that specifies a particular amino acid.
- Example:
  - AUG (Adenine- Uracil- Guanine) → Methionine (Start codon).
  - UAA, UAG, UGA → Stop codons (Termination signals)
- Characteristics / Properties of Genetic Code.

### 1. Triplet Code

- Each amino acid is coded by a triplet of nucleotides (3 bases).
- Example : AUG codes for Methionine .

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## 2. Degenerate Code

- Most amino acids are coded by more than one codon.
- Example : Leucine has 6 codons, Serine has 6 codons.

## 3. Non- Overlapping Code

- Each base is read only once in forming a codon ; codons do not overlap.

## 4. Comma-Less Code

- There are no gaps or punctuation between codons ; reading continues without interruption.

## 5. Universal Code

- The same codons specify the same amino acids in almost all living organisms.
- Example : AUG → Methionine in both humans and bacteria.

## 6. Specific and Unambiguous

- One codon always codes for only one amino acid ; it is not ambiguous.
- Example : UUU always codes for Phenylalanine .

## DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

### 7. Start Codon and Stop Codons

- Start Codon : AUG (Codes for Methionine → signals initiation of translation).
- Stop Codons : UAA, UAG, UGA (signal termination of protein synthesis).

### 8. Non-Ambiguous and Non-redundant Nature.

- Though multiple codons may code for the same amino acid (degeneracy), a codon never codes for more than one amino acid.

### 9. Colinearity

- The sequence of codons in mRNA corresponds directly and linearly to the sequence of amino acids in the proteins.
- **Conclusion** : The genetic code is a universal, triplet and degenerate system that governs the accurate translation of genetic information from mRNA into proteins, ensuring life's continuity and function.

## DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

**2/3 or MCQ****Q.1. Define Hyperuricemia.****→ ANSWER : Definition :**

- Hyperuricemia is a metabolic disorder characterized by an abnormally high level of uric acid in the blood - generally above 7 mg/dL in males and above 6 mg/dL in females.
- **Clinical Significance** :
- Leads to deposition of sodium urate crystals in joints and tissues.
- Causes inflammation, pain and swelling.
- Major risk factor for gout disease and kidney stone .
- **Conclusion**
- Hyperuricemia is an important biochemical indicator of impaired purine metabolism and can lead to serious joint and renal complications if untreated.

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## Q.2. Gout Disease

→ **ANSWER**: Definition

- Gout is a metabolic disorder resulting from deposition of uric acid crystals (sodium urate) in joints and tissues due to chronic hyperuricemia.

• **Pathophysiology**:

- Excess uric acid forms sharp needle-like crystals in joints (especially great toe).
- These crystals cause inflammation and severe pain known as a gouty attack.

• Symptoms:

1. Intense pain and redness in joints (especially big toe).
2. Swelling and stiffness.
3. Fever in severe attacks.

• Conclusion

- Gout is a painful joint disorder due to defective purine metabolism, which can be managed effectively by diet and uric acid-lowering drugs.

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## Q.3. DNA and its functions

### → **ANSWER:** Definition

- DNA (Deoxyribonucleic Acid) is a double-stranded helical molecule that carries the genetic information required for growth, development and reproduction.

### • **Functions of DNA:**

#### 1. Genetic Material :

- Stores hereditary information and transfers it to offspring.

#### 2. Replication :

- Can duplicate itself before cell division, ensuring genetic continuity.

#### 3. Template of RNA :

- Serves as a template during transcription to form RNA.

#### 4. Control of Cell Functions :

- Directs synthesis of proteins that regulate all biological activities.

#### 5. Mutations and Evolution :

- Alterations in DNA sequences cause variations and drive evolution.

# DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

## Q.4. RNA and its Functions

→ **ANSWER**: Definitions

- RNA (Ribonucleic Acid) is a single-stranded nucleic acid that plays a vital role in protein synthesis and gene expression.

- **Types & Functions**

1. Messenger RNA (mRNA): Carries genetic code from DNA to ribosome for protein synthesis.
2. Transfer RNA (tRNA): Brings specific amino acids to the ribosome.
3. Ribosomal RNA (rRNA): Forms structural and catalytic part of ribosomes.
4. Small Nuclear RNA (snRNA): Helps in RNA processing and splicing.

## Q.5 Define Protein Synthesis & Its Inhibitors

• → **ANSWER**: Definition :

- Protein Synthesis (Translation) is the biological process in which amino acids are assembled into a polypeptide chain according to the sequence of codons in mRNA.

## DEPTH OF BIOLOGY - Level up your studies with DOB

For more updates join DEPTH OF BIOLOGY APPLICATION

- **Inhibitors of Protein Synthesis:**

| Drug / Toxin                     | Site of Action         | Mechanism                            |
|----------------------------------|------------------------|--------------------------------------|
| Chloramphenicol                  | 50s ribosomal subunit  | Inhibits peptidyl transferase.       |
| Tetracycline                     | 30s ribosomal subunit. | Blocks attachment of aminoacyl tRNA. |
| Streptomycin                     | 30s ribosomal Subunit. | Causes misreading of mRNA.           |
| Erythromycin                     | 50s ribosomal subunit  | Prevents translocation Step.         |
| Cycloheximide<br>(in eukaryotes) | 80s ribosome           | Inhibits elongation.                 |